98%
921
2 minutes
20
This study reports the findings from using time-domain nuclear magnetic resonance (TD-NMR) to analyze the pore structures of cotton fibers. Cotton fibers, which swell and soften in water, present challenges for conventional pore measurement techniques. TD-NMR overcomes these by measuring the transverse relaxation time (T) of water protons within the fibers, indicative of internal pore sizes. We established a T-to-pore size conversion equation using mixed cellulose ester membranes. This enabled differentiation between strongly bound, loosely bound, and free water within the fibers, and detailed the water distribution. A method for measuring the pore size distribution of wet cotton fiber was developed using TD-NMR. We then examined how various pretreatments affect the fibers' internal pores by comparing their pore size distribution and porosity. Specifically, caustic mercerization primarily enlarges the porosity and size of larger pores, while liquid ammonia treatment increases porosity but reduces the size of smaller pores. This research confirms TD-NMR's utility in assessing cotton fabrics' wet processing performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132781 | DOI Listing |
Food Res Int
November 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China. Electronic a
While restructuring agricultural products enhances heat and mass transfer during freeze-drying, the underlying mechanisms remain poorly understood. This study employed a multiscale approach, combining freezing dynamics, sublimation drying kinetics, X-ray tomography, gas permeability assessments, thermodynamic parameters analysis, and mathematical modeling to systematically investigate the differences in transfer properties between natural and restructured peaches across the freezing and sublimation drying processes. Key results demonstrated that restructuring decreased the freezing time by 21.
View Article and Find Full Text PDFJ Occup Environ Hyg
September 2025
Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.
This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Bazylak Group, Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
In this study, the effects of operating temperature on pore-scale gas bubble transport in a carbon-based anode porous transport layer (PTL) of a polymer electrolyte membrane (PEM) electrolyzer is revealed using operando X-ray computed tomography (CT). Higher temperature operation (80 °C compared to 40 °C) led to a lower total gas bubble volume fraction in the PTL (0.25 to 0.
View Article and Find Full Text PDFACS Omega
September 2025
Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629HS, The Netherlands.
A new and sustainable membrane manufacturing method is 3D printing, which reduces the number of fabrication steps, waste production, and the corresponding CO emissions. It further enables fabricating membranes with well-defined pore size, shape, and configuration. Here, we study 3D printing of microfiltration membranes using a novel dual-wavelength microstereolithography method.
View Article and Find Full Text PDFRSC Adv
August 2025
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos" Agia Paraskevi 15341 Greece.
In this study, porous polysiloxane (PS)/multi-walled carbon nanotube (MWCNT) nanocomposite films were developed as high-performance triboelectric layers for flexible triboelectric nanogenerators (TENGs). TENGs convert mechanical motion into electricity and offer a promising solution for self-powered electronic systems. The nanocomposites were fabricated using a doctor blading method, and porosity was introduced a simple, scalable salt-leaching technique.
View Article and Find Full Text PDF