A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prognostic subgroups of chronic pain patients using latent variable mixture modeling within a supervised machine learning framework. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study combined a supervised machine learning framework with an unsupervised method, finite mixture modeling, to identify prognostically meaningful subgroups of diverse chronic pain patients undergoing interdisciplinary treatment. Questionnaire data collected at pre-treatment and 1-year follow up from 11,995 patients from the Swedish Quality Registry for Pain Rehabilitation were used. Indicators measuring pain characteristics, psychological aspects, and social functioning and general health status were used to form subgroups, and pain interference at follow-up was used for the selection and the performance evaluation of models. A nested cross-validation procedure was used for determining the number of classes (inner cross-validation) and the prediction accuracy of the selected model among unseen cases (outer cross-validation). A four-class solution was identified as the optimal model. Identified subgroups were separable on indicators, predictive of long-term outcomes, and related to background characteristics. Results are discussed in relation to previous clustering attempts of patients with diverse chronic pain conditions. Our analytical approach, as the first to combine mixture modeling with supervised, targeted learning, provides a promising framework that can be further extended and optimized for improving accurate prognosis in pain treatment and identifying clinically meaningful subgroups among chronic pain patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143186PMC
http://dx.doi.org/10.1038/s41598-024-62542-wDOI Listing

Publication Analysis

Top Keywords

chronic pain
16
pain patients
12
mixture modeling
12
subgroups chronic
8
pain
8
modeling supervised
8
supervised machine
8
machine learning
8
learning framework
8
meaningful subgroups
8

Similar Publications