A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prehospital Shock Index Multiplied by the Alert/Verbal/Painful/Unresponsive Score as a Predictor of Clinical Outcomes in Traumatic Injury. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Various prediction scores have been developed to predict mortality in trauma patients, such as the shock index (SI), modified SI (mSI), age-adjusted SI (aSI), and the shock index (SI) multiplied by the alert/verbal/painful/unresponsive (AVPU) score (SIAVPU). The SIAVPU is a novel scoring system but its prediction accuracy for trauma outcomes remains in need of further validation. Therefore, we investigated the accuracy of four scoring systems, including SI, mSI, aSI, and SIAVPU, in predicting mortality, admission to the intensive care unit (ICU), and prolonged hospital length of stay ≥ 30 days (LOS).

Methods: This retrospective multicenter study used data from the Tzu Chi Hospital trauma database. The area under the receiver operating characteristic curve (AUROC) was determined for each outcome to assess their discrimination capabilities and comparing by Delong's test. Subgroup analyses were conducted to investigate the prediction accuracy of the SIAVPU in different patient populations.

Results: In total, 5355 patients were included in the analysis. The median of SIAVPU were significantly higher among patients at those with major injury (1.47 vs 0.63), those admitted to the ICU (0.73 vs 0.62), those with prolonged hospital LOS≥ 30 days (0.83 vs 0.64), and those with mortality (1.08 vs 0.64). The AUROC of the SIAVPU was significantly higher than that of the SI, mSI, and aSI for 24-h mortality (AUROC: 0.845 vs 0.533, 0.540, and 0.678), 3-day mortality (AUROC: 0.803 vs 0.513, 0.524, and 0.688), 7-day mortality (AUROC: 0.755 vs 0.494, 0.505, and 0.648), in-hospital mortality (AUROC: 0.722 vs 0.510, 0.524, and 0.667), ICU admission (AUROC: 0.635 vs 0.547, 0.551, and 0.563). At the optimal cutoff value of 0.9, the SIAVPU had an accuracy of 82.2% for predicting 24-h mortality, 82.8% for predicting 3-day mortality, of 82.8% for predicting 7-day mortality, of 82.5% for predicting in-hospital mortality, of 73.9% for predicting Intensive Care Unit (ICU) admission, and of 81.7% for predicting prolonged hospital LOS ≥30 days.

Conclusions: Our results reveal that SIAVPU has better accuracy than the SI, mSI, and aSI for predicting 24-h, 3-day, 7-day, and in-hospital mortality; ICU admission; and prolonged hospital LOS ≥30 days among patients with traumatic injury.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10903127.2024.2362921DOI Listing

Publication Analysis

Top Keywords

prolonged hospital
16
mortality auroc
16
mortality
12
msi asi
12
in-hospital mortality
12
icu admission
12
shock multiplied
8
multiplied alert/verbal/painful/unresponsive
8
traumatic injury
8
siavpu
8

Similar Publications