Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this communication, an innovative and straightforward protocol for the one-pot catalytic synthesis of bis(indolyl)pyrimidine derivatives and their DNA binding abilities is presented. The synthesis involves the condensation of indole with diverse substituted pyrimidine-5-carbaldehydes, employing cost-effective and reusable Sr-Al supported nanophosphors, specifically strontium aluminate (SrAlO), as a catalyst. In particular, this method does not require the use of toxic solvents. The Sr-Al supported nanophosphorus catalyst exhibited sustained activity over multiple cycles and showed no significant decline while maintaining its strictly heterogeneous properties. The bis(indolyl)pyrimidine derivatives were extensively characterized using spectroscopic and analytical techniques. Furthermore, the interaction between these derivatives and CT-DNA was investigated by absorption spectroscopy, viscosity measurement, and molecular docking studies. Photoinduced cleavage studies demonstrated the photonuclease activity of the compound against pUC19 DNA upon exposure to UV-visible radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15257770.2024.2358901 | DOI Listing |