Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs. Recent advances in regenerative medicine advocate for the use of three-dimensional culture of hADSCs to produce EVs, as it more accurately simulates their physiological state. Moreover, the successful application of EVs in tissue engineering relies on the targeted delivery of EVs to cells within biomaterial scaffolds.

Methods And Results: The hADSCs spheroids and hADSCs gelatin methacrylate (GelMA) microspheres are utilized to produce three-dimensional cultured EVs, corresponding to hADSCs spheroids-EVs and hADSCs microspheres-EVs respectively. hADSCs spheroids-EVs demonstrate excellent production and functional molecule loading compared with hADSCs microspheres-EVs. The upregulation of eight miRNAs (i.e. hsa-miR-486-5p, hsa-miR-423-5p, hsa-miR-92a-3p, hsa-miR-122-5p, hsa-miR-223-3p, hsa-miR-320a, hsa-miR-126-3p, and hsa-miR-25-3p) and the downregulation of hsa-miR-146b-5p within hADSCs spheroids-EVs show the potential of improving the fate of remaining ear chondrocytes and promoting cartilage formation probably through integrated regulatory mechanisms. Additionally, a quick and innovative pipeline is developed for isolating chondrocyte homing peptide-modified EVs (CHP-EVs) from three-dimensional dynamic cultures of hADSCs spheroids. CHP-EVs are produced by genetically fusing a CHP at the N-terminus of the exosomal surface protein LAMP2B. The CHP + LAMP2B-transfected hADSCs spheroids were cultured with wave motion to promote the secretion of CHP-EVs. A harvesting method is used to enable the time-dependent collection of CHP-EVs. The pipeline is easy to set up and quick to use for the isolation of CHP-EVs. Compared with nontagged EVs, CHP-EVs penetrate the biomaterial scaffolds and specifically deliver the therapeutic miRNAs to the remaining ear chondrocytes. Functionally, CHP-EVs show a major effect on promoting cell proliferation, reducing cell apoptosis and enhancing cartilage formation in remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment.

Conclusions: In summary, an innovative pipeline is developed to obtain CHP-EVs from three-dimensional dynamic culture of hADSCs spheroids. This pipeline can be customized to increase EVs production and functional molecule loading, which meets the requirements for regulating remaining ear chondrocyte fate in the M1 macrophage-infiltrated microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141023PMC
http://dx.doi.org/10.1186/s12951-024-02567-5DOI Listing

Publication Analysis

Top Keywords

hadscs spheroids
20
remaining ear
20
culture hadscs
16
ear chondrocytes
16
production functional
16
functional molecule
16
molecule loading
16
hadscs
14
innovative pipeline
12
three-dimensional dynamic
12

Similar Publications

Despite the promising potential of stromal cell therapy in treating myocardial infarction (MI), its effectiveness is limited by poor cell retention and engraftment in ischemic environments. This study introduces a novel strategy that combines the preconditioning of human adipose-derived stromal cells (hADSCs) using OLED-based photobiomodulation (OPBM) and culturing these cells into 3D spheroids. The preconditioned 3D spheroids (APCS group) exhibit significantly enhanced angiogenic, arterialized, and tissue remodeling capabilities compared with those of traditional 2D cultures and non-preconditioned spheroids.

View Article and Find Full Text PDF

Adipose tissue is highly vascularized, which is crucial for homeostasis and energy storage. Current efforts to engineer 3D vascularized adipose tissue typically involve co-culturing adipocytes and endothelial cells, but adipogenic differentiation often suppresses endothelial function. In this study, we propose a novel approach to reconstruct vascularized adipose tissues by effectively coupling adipogenesis and vasculogenesis.

View Article and Find Full Text PDF

Stem cell-based therapy holds promise for cartilage regeneration in treating knee osteoarthritis (KOA). Injectable hydrogels have been developed to mimic the extracellular matrix (ECM) and facilitate stem cell growth, proliferation, and differentiation. However, these hydrogels face limitations such as poor mechanical strength, inadequate biocompatibility, and suboptimal biodegradability, collectively hindering their effectiveness in cartilage regeneration.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs.

View Article and Find Full Text PDF

Reconstruction of large 3D tissues based on assembly of micro-sized multi-cellular spheroids has gained attention in tissue engineering. However, formation of 3D adipose tissue from spheroids has been challenging due to the limited adhesion capability and restricted cell mobility of adipocytes in culture media. In this study, we addressed this problem by developing adipo-inductive nanofibers enabling dual delivery of indomethacin and insulin.

View Article and Find Full Text PDF