Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Assessment of platelet function is key in diagnosing bleeding disorders and evaluating antiplatelet drug efficacy. However, there is a prevailing "one-size-fits-all" approach in the interpretation of measures of platelet reactivity, with arbitrary cutoffs often derived from healthy volunteer responses.
Objectives: Our aim was to compare well-used platelet reactivity assays.
Methods: Blood and platelet-rich plasma obtained from the Framingham Heart Study ( = 3429) were assayed using a range of agonists in 5 platelet assays: light transmission aggregometry, Optimul aggregometry, Multiplate impedance aggregometry (Roche Diagnostics), Total Thrombus-Formation Analysis System, and flow cytometry. Using linear mixed-effect models, we determined the contribution of preanalytical and technical factors that modulated platelet reactivity traits.
Results: A strong intra-assay correlation of platelet traits was seen in all assays, particularly Multiplate velocity ( = 0.740; ristocetin vs arachidonic acid). In contrast, only moderate interassay correlations were observed ( = 0.375; adenosine diphosphate Optimul E vs light transmission aggregometry large area under the curve). As expected, antiplatelet drugs strongly reduced platelet responses, with aspirin use primarily targeting arachidonic acid-induced aggregation, and explained substantial variance (β = -1.735; = 4.59 × 10; variance proportion = 46.2%) and P2Y antagonists blocking adenosine diphosphate responses (β = -1.612; = 6.75 × 10; variance proportion = 2.1%). Notably, female sex and older age were associated with enhanced platelet reactivity. Fasting status and deviations from standard venipuncture practices did not alter platelet reactivity significantly. Finally, the agonist batch, phlebotomist, and assay technician (more so for assays that require additional sample manipulation) had a moderate to large effect on measured platelet reactivity.
Conclusion: Caution must be exercised when extrapolating findings between assays, and the use of standard ranges must be medication-specific and sex-specific at a minimum. Researchers should also consider preanalytical and technical variables when designing experiments and interpreting platelet reactivity measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135030 | PMC |
http://dx.doi.org/10.1016/j.rpth.2024.102406 | DOI Listing |