A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Impact of the reductive deiodination on the sorption of iodinated X-ray contrast media to filter sand and activated carbon. | LitMetric

Impact of the reductive deiodination on the sorption of iodinated X-ray contrast media to filter sand and activated carbon.

Water Res

Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair of Water Quality Engineering, Strasse des 17. Juni 135 10623 Berlin, Germany. Electronic address:

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iodinated X-ray contrast media (ICM) and their aerobic transformation products (TPs) are widespread in the aquatic environment due to their persistent and mobile character. In a previous lab study, we have shown that the reductive (partial) deiodination of selected triiodobenzene derivatives increases the sorption to aquifer sand and loam soil, since iodine affects the compounds by steric hindrance, repulsive forces, resonance and inductive effects. These results suggest that the (partial) deiodination generally occurring to ICM and aerobic ICM TPs during anoxic/anaerobic bank filtration has a potential to increase their removal by sorption to natural sorbents. To basically assess the sorption potential to technically applied materials for drinking water treatment subsequent to bank filtration, we investigated the sorption of iopromide, diatrizoate and 5-amino-2,4,6-triiodoisophtalic acid and their di, mono and deiodinated structures to used filter sand from a waterworks and different fresh powdered activated carbons in batch tests using Berlin drinking water. The filter material, coated by iron and manganese oxides as well as organic material (including biofilm), preferentially removed monoiodinated derivatives, but diffusion through the organic layer heavily slowed the sorption. Therefore, the removal potential by sorption in rapid sand filters of waterworks for (partially) deiodinated benzene derivatives is suggested to be low. The deiodination of iopromide and diatrizoate significantly increased the sorption affinity to activated carbon and the competitiveness with regard to drinking water DOC. Despite the large atom radius of iodine, no clear correlation was found between the pore characteristics of the activated carbons and the molecular size of the compounds. This study emphasises the importance of anoxic/anaerobic conditions for the removal of persistent and mobile ICM and ICM TPs during drinking water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121801DOI Listing

Publication Analysis

Top Keywords

drinking water
16
sorption
8
iodinated x-ray
8
x-ray contrast
8
contrast media
8
filter sand
8
activated carbon
8
icm aerobic
8
persistent mobile
8
partial deiodination
8

Similar Publications