98%
921
2 minutes
20
Cell size regulation has been extensively studied in symmetrically dividing cells, but the mechanisms underlying the control of size asymmetry in asymmetrically dividing bacteria remain elusive. Here, we examine the control of asymmetric division in , a bacterium that produces daughter cells with distinct fates and morphologies upon division. Through comprehensive analysis of multi-generational growth and shape data, we uncover a tightly regulated cell size partitioning mechanism. We find that errors in division site positioning are promptly corrected early in the division cycle through differential growth. Our analysis reveals a negative feedback between the size of daughter cell compartments and their growth rates, wherein the larger compartment grows slower to achieve a homeostatic size partitioning ratio at division. To explain these observations, we propose a mechanistic model of differential growth, in which equal amounts of growth regulators are partitioned into daughter cell compartments of unequal sizes and maintained over time via size-independent synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134071 | PMC |
http://dx.doi.org/10.26508/lsa.202402591 | DOI Listing |
Eur J Case Rep Intern Med
August 2025
Nephrology Department, Unidade Local de Saúde de Braga, Braga, Portugal.
Introduction: Bevacizumab is a monoclonal antibody that targets vascular endothelial growth factor (VEGF) and is widely used in oncology for its anti-angiogenic properties. However, VEGF inhibition may result in significant nephrotoxicity, including thrombotic microangiopathy (TMA). While systemic TMA is well-described, isolated renal-limited TMA remains under recognised.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.
Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).
Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.
RSC Adv
September 2025
Otto-von-Guericke-University Magdeburg, Chemical Institute, Chair for Industrial Chemistry Universitätsplatz 2 39106 Magdeburg Germany
This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).
View Article and Find Full Text PDFFront Microbiol
August 2025
Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.
View Article and Find Full Text PDFBiochem Biophys Rep
June 2025
The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.
Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.