98%
921
2 minutes
20
With the increasing frequencies of extreme weather events caused by climate change, the risk of forest damage from insect attacks grows. Storms and droughts can damage and weaken trees, reduce tree vigour and defence capacity and thus provide host trees that can be successfully attacked by damaging insects, as often observed in Norway spruce stands attacked by the Eurasian spruce bark beetle Ips typographus. Following storms, partially uprooted trees with grounded crowns suffer reduced water uptake and carbon assimilation, which may lower their vigour and decrease their ability to defend against insect attack. We conducted in situ measurements on windthrown and standing control trees to determine the concentrations of non-structural carbohydrates (NSCs), of phenolic defences and volatile monoterpene emissions. These are the main storage and defence compounds responsible for beetle´s pioneer success and host tree selection. Our results show that while sugar and phenolic concentrations of standing trees remained rather constant over a 4-month period, windthrown trees experienced a decrease of 78% and 37% of sugar and phenolic concentrations, respectively. This strong decline was especially pronounced for fructose (-83%) and glucose (-85%) and for taxifolin (-50.1%). Windthrown trees emitted 25 times greater monoterpene concentrations than standing trees, in particular alpha-pinene (23 times greater), beta-pinene (27 times greater) and 3-carene (90 times greater). We conclude that windthrown trees exhibited reduced resources of anti-herbivore and anti-pathogen defence compounds needed for the response to herbivore attack. The enhanced emission rates of volatile terpenes from windthrown trees may provide olfactory cues during bark beetle early swarming related to altered tree defences. Our results contribute to the knowledge of fallen trees vigour and their defence capacity during the first months after the wind-throw disturbance. Yet, the influence of different emission rates and profiles on bark beetle behaviour and host selection requires further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132463 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302714 | PLOS |
PLoS One
May 2024
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.
With the increasing frequencies of extreme weather events caused by climate change, the risk of forest damage from insect attacks grows. Storms and droughts can damage and weaken trees, reduce tree vigour and defence capacity and thus provide host trees that can be successfully attacked by damaging insects, as often observed in Norway spruce stands attacked by the Eurasian spruce bark beetle Ips typographus. Following storms, partially uprooted trees with grounded crowns suffer reduced water uptake and carbon assimilation, which may lower their vigour and decrease their ability to defend against insect attack.
View Article and Find Full Text PDFSci Total Environ
December 2023
UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Centre for X-ray Tomography, Ghent University, 9000 Ghent, Belgium. Electronic address:
Common beech (Fagus sylvatica) is one of the most important deciduous tree species in European forests. However, climate-change-induced drought may threaten its dominant position. The Sonian Forest close to Brussels (Belgium) is home to some of the largest beech trees in the world.
View Article and Find Full Text PDFPlants (Basel)
June 2022
Latvian State Forest Research Institute 'Silava', 111 Rigas Str., LV-2169 Salaspils, Latvia.
Under the intensifying cyclonic activity, the wind resistance of European forests could be increased through science-based adaptive forest management, which requires the quantification of tree stability. In this regard, the dimensions of the soil-root plate can be directly attributed to tree wind resistance; however, naturally uprooted trees might be a biased source of information for the evaluation of adaptive measures due to uncontrolled conditions and uneven sample size. Therefore, the dimensions of the soil-root plates of naturally windthrown silver birch trees ( Roth.
View Article and Find Full Text PDFEcology
October 2021
Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, Virginia, 23062, USA.
The impacts of climate change on ecosystems are manifested in how organisms respond to episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a prominent example of ecosystem state change, driven by the continuous stress of sea-level rise (press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction of 143 windthrown eastern red cedar (Juniperus virginiana) trees in a rapidly retreating coastal forest in Chesapeake Bay (USA).
View Article and Find Full Text PDFJ Chem Ecol
June 2019
Chemical Ecology, Department Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, 230 53, Alnarp, Sweden.
Bark beetles kill apparently vigorous conifers during epidemics by means of pheromone-mediated aggregation. During non-endemic conditions the beetles are limited to use trees with poor defense, like wind-thrown. To find olfactory cues that help beetles to distinguish between trees with strong or weak defense, we collected volatiles from the bark surface of healthy felled or standing Picea abies trees.
View Article and Find Full Text PDF