A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Validation of the CREST model and comparison with SCAI shock classification for the prediction of circulatory death in resuscitated out-of-hospital cardiac arrest. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: We validated the CREST model, a 5 variable score for stratifying the risk of circulatory aetiology death (CED) following out-of-hospital cardiac arrest (OHCA) and compared its discrimination with the SCAI shock classification. Circulatory aetiology death occurs in approximately a third of patients admitted after resuscitated OHCA. There is an urgent need for improved stratification of the patient with OHCA on arrival to a cardiac arrest centre to improve patient selection for invasive interventions.

Methods And Results: The CREST model and SCAI shock classification were applied to a dual-centre registry of 723 patients with cardiac aetiology OHCA, both with and without ST-elevation myocardial infarction (STEMI), between May 2012 and December 2020. The primary endpoint was a 30-day CED. Of 509 patients included (62.3 years, 75.4% male), 125 patients had CREST = 0 (24.5%), 162 had CREST = 1 (31.8%), 140 had CREST = 2 (27.5%), 75 had CREST = 3 (14.7%), 7 had a CREST of 4 (1.4%), and no patients had CREST = 5. Circulatory aetiology death was observed in 91 (17.9%) patients at 30 days [STEMI: 51/289 (17.6%); non-STEMI (NSTEMI): 40/220 (18.2%)]. For the total population, and both NSTEMI and STEMI subpopulations, an increasing CREST score was associated with increasing CED (all P < 0.001). The CREST score and SCAI classification had similar discrimination for the total population [area under the receiver operating curve (AUC) = 0.72/calibration slope = 0.95], NSTEMI cohort (AUC = 0.75/calibration slope = 0.940), and STEMI cohort (AUC = 0.69 and calibration slope = 0.925). Area under the receiver operating curve meta-analyses demonstrated no significant differences between the two classifications.

Conclusion: The CREST model and SCAI shock classification show similar prediction results for the development of CED after OHCA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ehjacc/zuae070DOI Listing

Publication Analysis

Top Keywords

crest model
16
scai shock
16
shock classification
16
cardiac arrest
12
circulatory aetiology
12
aetiology death
12
crest
11
classification prediction
8
out-of-hospital cardiac
8
model scai
8

Similar Publications