A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Physicochemical mechanisms of aggregation and fibril formation of α-synuclein and apolipoprotein A-I. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deposition and accumulation of amyloid fibrils is a hallmark of a group of diseases called amyloidosis and neurodegenerative disorders. Although polypeptides potentially have a fibril-forming propensity, native proteins have evolved into proper functional conformations to avoid aggregation and fibril formation. Understanding the mechanism for regulation of fibril formation of native proteins provides clues for the rational design of molecules for inhibiting fibril formation. Although fibril formation is a complex multistep reaction, experimentally obtained fibril formation curves can be fitted with the Finke-Watzky (F-W) two-step model for homogeneous nucleation followed by autocatalytic fibril growth. The resultant F-W rate constants for nucleation and fibril formation provide information on the chemical kinetics of fibril formation. Using the F-W two-step model analysis, we investigated the physicochemical mechanisms of fibril formation of a Parkinson's disease protein α-synuclein (αS) and a systemic amyloidosis protein apolipoprotein A-I (apoA-I). The results indicate that the C-terminal region of αS enthalpically and entropically suppresses nucleation through the intramolecular interaction with the N-terminal region and the intermolecular interaction with existing fibrils. In contrast, the nucleation of the N-terminal fragment of apoA-I is entropically driven likely due to dehydration of large hydrophobic segments in the molecule. Based on our recent findings, we discuss the similarity and difference of the fibril formation mechanisms of αS and the N-terminal fragment of apoA-I from the physicochemical viewpoints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128303PMC
http://dx.doi.org/10.2142/biophysico.bppb-v21.0005DOI Listing

Publication Analysis

Top Keywords

fibril formation
40
fibril
11
formation
10
physicochemical mechanisms
8
aggregation fibril
8
apolipoprotein a-i
8
native proteins
8
f-w two-step
8
two-step model
8
n-terminal fragment
8

Similar Publications