Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Understanding the dynamics of conduction velocity (CV) and voltage amplitude (VA) is crucial in cardiac electrophysiology, particularly for substrate-based catheter ablations targeting slow conduction zones and low voltage areas. This study utilizes ultra-high-density mapping to investigate the impact of heart rate and pacing location on changes in the wavefront direction, CV, and VA of healthy pig hearts.

Methods: We conducted in vivo electrophysiological studies on four healthy juvenile pigs, involving various pacing locations and heart rates. High-resolution electroanatomic mapping was performed during intrinsic normal sinus rhythm (NSR) and electrical pacing. The study encompassed detailed analyses at three levels: entire heart cavities, subregions, and localized 5-mm-diameter circular areas. Linear mixed-effects models were used to analyze the influence of heart rate and pacing location on CV and VA in different regions.

Results: An increase in heart rate correlated with an increase in conduction velocity and a decrease in voltage amplitude. Pacing influenced conduction velocity and voltage amplitude. Pacing also influenced conduction velocity and voltage amplitude, with varying effects observed based on the pacing location within different heart cavities. Pacing from the right atrium (RA) decreased CV in all heart cavities. The overall CV and VA changes in the whole heart cavities were not uniformly reflected in all subregions and subregional CV and VA changes were not always reflected in the overall analysis. Overall, there was a notable variability in absolute CV and VA changes attributed to pacing.

Conclusions: Heart rate and pacing location influence CV and VA within healthy juvenile pig hearts. Subregion analysis suggests that specific regions of the heart cavities are more susceptible to pacing. High-resolution mapping aids in detecting regional changes, emphasizing the substantial physiological variations in CV and VA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122149PMC
http://dx.doi.org/10.3390/jpm14050473DOI Listing

Publication Analysis

Top Keywords

heart rate
20
conduction velocity
20
voltage amplitude
20
heart cavities
20
velocity voltage
16
pacing location
16
rate pacing
12
pacing
11
heart
10
influence heart
8

Similar Publications

Importance: The cardiovascular benefits of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may vary by body mass index (BMI), but evidence on BMI-specific outcomes remains limited.

Objective: To investigate the associations of GLP-1 RA use with cardiovascular and kidney outcomes across BMI categories in patients with type 2 diabetes.

Design, Setting, And Participants: This retrospective cohort study used the Chang Gung Research Database, a clinical dataset covering multiple hospitals in Taiwan.

View Article and Find Full Text PDF

Background: Various interventions have been proposed to enhance surgical field quality during endoscopic sinus surgery (ESS). This study evaluates whether preoperative oral clonidine enhances surgical field quality during ESS.

Methods: PubMed, Scopus, Web of Science, Embase, and CENTRAL databases were searched.

View Article and Find Full Text PDF

The explanation for how acutely stressful experiences could result in proximal health outcomes has been lacking in occupational health research. Although scholars have argued that individual personality and affect could worsen health behaviors, we believe that these qualities also could intensify the experience of acute stressors, potentially explaining why acutely stress encounters result in poor health outcomes for some people, but not others. Our study examines three individual differences - worry, negative affect, and positive affect - that are relevant to differential stress anticipation, reactivity, and recovery.

View Article and Find Full Text PDF

Objective: Hypertensive disorders of pregnancy (HDP) cause significant perinatal morbidity. We developed a nomogram predicting preterm delivery risk using pre-delivery 24-h ambulatory blood pressure monitoring (ABPM) and clinical factors.

Methods: HDP patients undergoing ABPM within 1 month pre-delivery were enrolled.

View Article and Find Full Text PDF

Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.

View Article and Find Full Text PDF