Assessment of Suitable Habitat of the Demoiselle Crane () in the Wake of Climate Change: A Study of Its Wintering Refugees in Pakistan.

Animals (Basel)

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inevitable impacts of climate change have reverberated across ecosystems and caused substantial global biodiversity loss. Climate-induced habitat loss has contributed to range shifts at both species and community levels. Given the importance of identifying suitable habitats for at-risk species, it is imperative to assess potential current and future distributions, and to understand influential environmental factors. Like many species, the Demoiselle crane is not immune to climatic pressures. Khyber Pakhtunkhwa and Balochistan provinces in Pakistan are known wintering grounds for this species. Given that Pakistan is among the top five countries facing devastating effects of climate change, this study sought to conduct species distribution modeling under climate change using data collected during 4 years of field surveys. We developed a Maximum Entropy distribution model to predict the current and projected future distribution of the species across the study area. Future habitat projections for 2050 and 2070 were carried out using two representative concentration pathways (RCP 4.5 and RCP 8.5) under three global circulation models, including HADGEM2-AO, BCC-CSM1-1, and CCSM4. The most influential factors shaping Demoiselle Crane habitat suitability included the temperature seasonality, annual mean temperature, terrain ruggedness index, and human population density, all of which contributed significantly to the suitability (81.3%). The model identified 35% of the study area as moderately suitable (134,068 km) and highly suitable (27,911 km) habitat for the species under current climatic conditions. Under changing climate scenarios, our model predicted a major loss of the species' current suitable habitat, with shrinkage and shift towards western-central areas along the Pakistan-Afghanistan boarder. The RCP 8.5, which is the extreme climate change scenario, portrays particularly severe consequences, with habitat losses reaching 65% in 2050 and 85% in 2070. This comprehensive study provides useful insights into the Demoiselle Crane habitat's current and future dynamics in Pakistan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117222PMC
http://dx.doi.org/10.3390/ani14101453DOI Listing

Publication Analysis

Top Keywords

climate change
20
demoiselle crane
16
suitable habitat
8
change study
8
current future
8
study area
8
habitat
7
species
7
climate
6
change
5

Similar Publications

Small glaciers situated in high mountainous areas are experiencing notable declines, characterized by unprecedented rates of ice loss in recent years. This study investigates the recent changes in surface elevation and mass loss occurring between 2010 and 2023 within the Alamkouh Glacier over three subperiods, one of the biggest glaciers in Iran and the Middle East. These assessments are derived from a combination of high-resolution LiDAR data in 2010 (with a spatial resolution of 20 cm) and multi-temporal surveys conducted using unmanned aerial vehicles (UAVs) in 2018, 2020, and 2023 (with spatial resolutions varied from 10 to 20 cm).

View Article and Find Full Text PDF

Thermotolerant yeasts promoting climate-resilient bioproduction.

FEMS Yeast Res

September 2025

Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.

View Article and Find Full Text PDF

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

The climate crisis jeopardizes human health and is one of the greatest threats to reproductive autonomy and human rights. Witnessing these threats, the Sexual and Reproductive Health and Rights and Climate Justice Coalition was formed in 2021 to advocate on the intersections between climate change and sexual and reproductive health, rights, and justice (SRHRJ). The Coalition's purpose is to leverage intersectional approaches to influence global and national policies, programs, and funding mechanisms to advance climate justice, gender equality, and human rights.

View Article and Find Full Text PDF