Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Accurately estimating population sizes for free-ranging animals through noninvasive methods, such as camera trap images, remains particularly limited by small datasets. To overcome this, we developed a flexible model for estimating upper limit populations and exemplified it by studying a group-living synanthrope, the long-tailed macaque (). Habitat preference maps, based on environmental and GPS data, were generated with a maximum entropy model and combined with data obtained from camera traps, line transect distance sampling, and direct sightings to produce an expected number of individuals. The mapping between habitat preference and number of individuals was optimized through a tunable parameter ρ (inquisitiveness) that accounts for repeated observations of individuals. Benchmarking against published data highlights the high accuracy of the model. Overall, this approach combines citizen science with scientific observations and reveals the long-tailed macaque populations to be (up to 80%) smaller than expected. The model's flexibility makes it suitable for many species, providing a scalable, noninvasive tool for wildlife conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122667 | PMC |
http://dx.doi.org/10.1126/sciadv.adn5390 | DOI Listing |