Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

"Organoids", three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we aimed to analyze the functionality and gene expression of pre- and post-differentiated human hepatic organoids derived from induced pluripotent stem cells and utilize them for toxicity assessment. First, we confirmed the functional similarity of this hepatic organoid model to the human liver through various functional assessments, such as glycogen storage, albumin and bile acid secretion, and cytochrome P450 (CYP) activity. Subsequently, utilizing these functionally validated hepatic organoids, we conducted toxicity evaluations with three hepatotoxic substances (ketoconazole, troglitazone, and tolcapone), which are well known for causing drug-induced liver injury, and three non-hepatotoxic substances (sucrose, ascorbic acid, and biotin). The organoids effectively distinguished between the toxicity levels of substances with and without hepatic toxicity. We demonstrated the potential of hepatic organoids with validated functionalities and genetic characteristics as promising models for toxicity evaluation by analyzing toxicological changes occurring in hepatoxic drug-treated organoids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126009PMC
http://dx.doi.org/10.3390/toxics12050371DOI Listing

Publication Analysis

Top Keywords

hepatic organoids
16
toxicity evaluation
8
organoid model
8
toxicity
7
hepatic
6
organoids
6
validating well-functioning
4
well-functioning hepatic
4
organoids toxicity
4
evaluation "organoids"
4

Similar Publications

Background: Hepatitis D virus (HDV) infection is the most severe form of human viral hepatitis. A poor virus-specific CD8T cell response may result in persistent HDV infection. We investigated anti-viral effect and mechanisms of ubiquitinated small hepatitis D antigen (Ub-S-HDAg) in HBV/HDV superinfected liver organoids.

View Article and Find Full Text PDF

Directed differentiation of human pluripotent stem cells into pancreatobiliary co-progenitor-like population.

Biochem Biophys Res Commun

August 2025

Department of Developmental and Regenerative Biology, iORGANtech Limited Company (Suzhou), Suzhou, 215000, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tia

Progress in uncovering the causes of extrahepatic biliary diseases and developing new therapies has been constrained by the inaccessibility of donor tissue and a lack of experimental models. Although hepatic, intrahepatic biliary, and pancreatic 2D/3D models have been successfully established from pluripotent stem cells (PSCs), in vitro generation of extrahepatic biliary cells remains a major challenge, due to the absence of developmental cues. Here we report a de novo method for directed differentiation of human PSCs (both embryonic and induced) into pancreato-biliary progenitors-like cells (PBPLCs).

View Article and Find Full Text PDF

Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids.

Antioxidants (Basel)

July 2025

Department of Internal Medicine, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea.

(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs.

View Article and Find Full Text PDF

Development of NAFLD-Specific Human Liver Organoid Models on a Microengineered Array Chip for Semaglutide Efficacy Evaluation.

Cell Prolif

August 2025

Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China.

Progressive non-alcoholic fatty liver disease (NAFLD) may culminate in severe complications, including fibrosis, cirrhosis and hepatocellular carcinoma, yet therapeutic breakthroughs remain elusive, necessitating novel pharmacological strategies. Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist clinically approved for type 2 diabetes and obesity management, has demonstrated pleiotropic effects in preclinical NAFLD models. In this study, we investigated semaglutide's therapeutic efficacy and mechanisms in a human liver organoids (hLOs) model of NAFLD.

View Article and Find Full Text PDF

Patient-derived tumor xenograft (PDX) models serve as powerful tools in oncology research owing to their ability to capture patient-specific tumor heterogeneity and clinical behavior. However, the conventional matrices derived from murine tumors, commonly used to generate PDX models, suffer from key limitations such as lack of tissue specificity, high production costs, and inconsistent batch quality. In response, our study investigates the use of decellularized liver extracellular matrix (Liver ECM) as a biomimetic alternative that more accurately recapitulates the native hepatic microenvironment.

View Article and Find Full Text PDF