98%
921
2 minutes
20
The advantageous versatility of hexapod robots is often accompanied by high power consumption, while animals have evolved an energy efficient locomotion. However, there are a lack of methods able to compare and apply animals' energetic optimizations to robots. In this study, we applied our method to a full servomotor-based hexapod robot to evaluate its energetic performance. Using an existing framework based on the laws of thermodynamics, we estimated four metrics using a dedicated test bench and a simulated robotic leg. We analyzed the characteristics of a single leg to shape the energetic profile of the full robot to a given task. Energy saving is improved by 10% through continuous duty factor adjustment with a 192% increase in power maximization. Moreover, adjusting the robot's velocity by the step length and associating this with gait switching, reduces the power loss by a further 10% at low-speed locomotion. However, unlike in animals, only one unique optimal operating point has been revealed, which is a disadvantage caused by the low energetic efficiency of servomotor-based hexapods. Thus, these legged robots are severely limited in their capacity to optimally adjust their locomotion to various tasks-a counter-intuitive conclusion for a supposedly versatile robot.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636921 | PMC |
http://dx.doi.org/10.1038/s41598-024-62184-y | DOI Listing |
Sci Rep
May 2024
Aix Marseille Univ, CNRS, ISM, 163 avenue de Luminy, 13288, Marseille Cedex 09, France.
The advantageous versatility of hexapod robots is often accompanied by high power consumption, while animals have evolved an energy efficient locomotion. However, there are a lack of methods able to compare and apply animals' energetic optimizations to robots. In this study, we applied our method to a full servomotor-based hexapod robot to evaluate its energetic performance.
View Article and Find Full Text PDF