The effect of muscle ultrastructure on the force, displacement and work capacity of skeletal muscle.

J R Soc Interface

Department of Evolution, Ecology and Organismal Biology, UC Riverside , Riverside, CA, USA.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285827PMC
http://dx.doi.org/10.1098/rsif.2023.0658DOI Listing

Publication Analysis

Top Keywords

actin myosin
24
filament lengths
20
myosin filament
16
force displacement
12
work capacity
12
muscle
9
muscle ultrastructure
8
displacement work
8
skeletal muscle
8
structural variation
8

Similar Publications

Skeletal Muscle Alpha Actin (ACTA1) Acetylation Enhances Myosin Binding and Increases Calcium Sensitivity.

Biophys Rep (N Y)

September 2025

Cellular Signal Transduction in the Cardiovascular System COBRE, University of Nevada Reno, Reno, NV 89557; Department of Nutrition, University of Nevada Reno, Reno, NV 89557. Electronic address:

Skeletal muscle alpha actin (ACTA1) is important for muscle contraction and relaxation, with historical studies focused on ACTA1 mutations in muscle dysfunction. Proteomics reports have consistently observed that actin, including ACTA1, is acetylated at multiple lysine sites. However, few reports have studied the effects of actin acetylation on cellular function, and fewer have examined ACTA1 acetylation on skeletal muscle function.

View Article and Find Full Text PDF

Traction-regulated persistence governs durotaxis across cell types.

Eur J Cell Biol

September 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China. Electronic address:

Cell migration toward stiffer or softer environments (durotaxis) underlies processes from development to cancer metastasis, yet the underlying mechanism and its universality remain unclear. To resolve this, we investigated how traction forces and directional persistence dictate cell migration along stiffness gradients. We utilized tunable PEG hydrogels with stiffness gradients of 1-16 kPa and perturbed contractility (blebbistatin, oligomycin), and adhesion (vinculin mutants), in cancer cells exhibiting opposing durotactic biases.

View Article and Find Full Text PDF

Unlabelled: As human skeletal muscle cellular and molecular contractile properties are temperature-sensitive, the ability to perform experiments at body temperature (∼37°C) may lead to a better understanding of their responses and potentially their effects upon whole-muscle and whole-body performance. We quantified molecular (myosin-actin cross-bridge mechanics and kinetics) and cellular (specific tension; force divided by cross-sectional area) function in slow-contracting myosin heavy chain (MHC) I and fast-contracting MHC IIA fibers from older adults (n=13, 8 female) at 37°C and compared these to results at 25°C. MHC I fibers were more temperature-sensitive than MHC IIA fibers, showing greater increases in cross-bridge kinetics (MHC I: 4.

View Article and Find Full Text PDF

T cell activation is characterized by rapid reorganization of the actin cytoskeleton and cell spreading on the antigen presenting cell. The T cell nucleus occupies a large fraction of the cell volume, and its mechanical properties are likely to act as a key determinant of activation. However, the contribution of nuclear mechanics to T cell spreading and activation is not well understood.

View Article and Find Full Text PDF

Understanding the behaviors of contractile actomyosin systems requires precise spatiotemporal control of filamentous myosin activity. Here, we develop a tool for optical control of contractility by extending the MyLOV family of gearshifting motors to create engineered filamentous myosins that change velocity in response to blue light. We characterize these minifilaments using single-molecule tracking assays, contractility assays in reconstituted actin networks, and imaging of contractile phenotypes in S2 cells.

View Article and Find Full Text PDF