Hydraulic vulnerability difference between branches and roots increases with environmental aridity.

Oecologia

Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, Chi

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The vulnerability of plant xylem to embolism can be described as the water potential at which xylem conductivity is lost by 50% (P). According to the traditional hypothesis of hydraulic vulnerability segmentation, the difference in vulnerability to embolism between branches and roots is positive (P > 0). It is not clear whether this occurs broadly across species or how segmentation might vary across aridity gradients. We compiled hydraulic and anatomical datasets from branches and roots across 104 woody species (including new measurements from 10 species) in four biomes to investigate the relationships between P and environmental factors associated with aridity. We found a positive P relationship across species, and evidence that P increases with aridity. Branch xylem hydraulic conductivity transitioned from more efficient (e.g., wider conduit, higher hydraulic conductivity) to safer (e.g., narrower conduit, more negative P) in response to the increase of aridity, while root xylem hydraulic conductivity remained unchanged across aridity gradients. Our results demonstrate that the hydraulic vulnerability difference between branches and roots is more positive in species from arid regions, largely driven by modifications to branch traits.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-024-05562-7DOI Listing

Publication Analysis

Top Keywords

branches roots
16
hydraulic vulnerability
12
hydraulic conductivity
12
vulnerability difference
8
difference branches
8
roots positive
8
aridity gradients
8
xylem hydraulic
8
hydraulic
7
aridity
6

Similar Publications

Analysis of physiological characteristics and gene co-expression networks in roots under low-temperature stress.

Front Plant Sci

August 2025

Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.

is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Mechanism of Early Branching of Balsa (Ochroma lagopus Swartz).

Physiol Plant

September 2025

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.

Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.

View Article and Find Full Text PDF

Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.

View Article and Find Full Text PDF

Optimizing maize late wilt disease management: A comparative assessment of bacterial biocontrol and Azoxystrobin alone and in combination.

Pestic Biochem Physiol

November 2025

Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.

Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.

View Article and Find Full Text PDF

Tightly bound tritium (TBT) in soil is poorly studied in terms of its bioavailability. This paper presents the results of long-term studies (2018 through 2023) on the bioavailability of tightly bound tritium in soil. Field studies were conducted in the epicentral zones of the Semipalatinsk test site (STS), using dominant and subdominant species.

View Article and Find Full Text PDF