98%
921
2 minutes
20
The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl) channels and lipid scramblases, is activated by the free intracellular Ca increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca release after GqPCRs or Ca entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca rises, one or two Ca ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl flux to ensure the physiological response. The Ca-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl facilitate V dependence by increasing the Ca sensitivity, intracellular protons can replace Ca and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2024.102891 | DOI Listing |
Cell Chem Biol
September 2025
iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Institute of Molecular Biology and Bio
Balanced or biased G protein and arrestin transmembrane signaling by the adenosine 2A receptor (AAR) is related to ligand-induced allosterically triggered variation of structural dynamics in the intracellular half of the transmembrane domain (TMD). F-nuclear magnetic resonance (NMR) of a network of genetically introduced meta-trifluoromethyl-L-phenylalanine (mtfF) probes in the core of the TMD revealed signaling-related structure rearrangements leading from the extracellular orthosteric drug-binding site to the G protein and arrestin contacts on the intracellular surface. The key element in this structural basis of signal transfer is dynamic loss of structural order in the intracellular half of the TMD, as manifested by local polymorphisms and associated rate processes within the molecular architecture determined previously by X-ray crystallography.
View Article and Find Full Text PDFWorld J Clin Oncol
August 2025
Department of Surgery, Kansas City VA Medical Center, University of Missouri-Kansas City, Kansas, MO 64128, United States.
Cell plasticity, also known as lineage plasticity, refers to the ability of a cell to reprogram and change its phenotypic identity in response to various cues. This phenomenon is context-dependent, playing a crucial role in embryonic development, tissue regeneration, and wound healing. However, when dysregulated, cell plasticity contributes to cancer initiation, progression, metastasis, and therapeutic resistance.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2025
Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
Drug residence time defines the duration the drug is bound to its protein target. It is a crucial determinant of drug action. Yet, a priori estimating it in the design could be the most challenging.
View Article and Find Full Text PDFNat Commun
August 2025
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
Adenosine receptors (ARs: AAR, AAR, AAR, and AAR) are crucial therapeutic targets; however, developing selective, efficacious drugs for them remains a significant challenge. Here, we present high-resolution cryo-electron microscopy (cryo-EM) structures of the human AAR in three distinct functional states: bound to the endogenous agonist adenosine, the clinically relevant agonist Piclidenoson, and the covalent antagonist LUF7602. These structures, complemented by mutagenesis and pharmacological studies, reveal an AAR activation mechanism that involves an extensive hydrogen bond network from the extracellular surface down to the orthosteric binding site.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the evolution of neurotoxin resistance in Australian skinks, focusing on mutations in the muscle nicotinic acetylcholine receptor (nAChR) α1 subunit's orthosteric site that prevent pathophysiological binding by α-neurotoxins.
View Article and Find Full Text PDF