A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A transformer-guided cross-modality adaptive feature fusion framework for esophageal gross tumor volume segmentation. | LitMetric

A transformer-guided cross-modality adaptive feature fusion framework for esophageal gross tumor volume segmentation.

Comput Methods Programs Biomed

Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, PR China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, PR China. Electronic address:

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: Accurate segmentation of esophageal gross tumor volume (GTV) indirectly enhances the efficacy of radiotherapy for patients with esophagus cancer. In this domain, learning-based methods have been employed to fuse cross-modality positron emission tomography (PET) and computed tomography (CT) images, aiming to improve segmentation accuracy. This fusion is essential as it combines functional metabolic information from PET with anatomical information from CT, providing complementary information. While the existing three-dimensional (3D) segmentation method has achieved state-of-the-art (SOTA) performance, it typically relies on pure-convolution architectures, limiting its ability to capture long-range spatial dependencies due to convolution's confinement to a local receptive field. To address this limitation and further enhance esophageal GTV segmentation performance, this work proposes a transformer-guided cross-modality adaptive feature fusion network, referred to as TransAttPSNN, which is based on cross-modality PET/CT scans.

Methods: Specifically, we establish an attention progressive semantically-nested network (AttPSNN) by incorporating the convolutional attention mechanism into the progressive semantically-nested network (PSNN). Subsequently, we devise a plug-and-play transformer-guided cross-modality adaptive feature fusion model, which is inserted between the multi-scale feature counterparts of a two-stream AttPSNN backbone (one for the PET modality flow and another for the CT modality flow), resulting in the proposed TransAttPSNN architecture.

Results: Through extensive four-fold cross-validation experiments on the clinical PET/CT cohort. The proposed approach acquires a Dice similarity coefficient (DSC) of 0.76 ± 0.13, a Hausdorff distance (HD) of 9.38 ± 8.76 mm, and a Mean surface distance (MSD) of 1.13 ± 0.94 mm, outperforming the SOTA competing methods. The qualitative results show a satisfying consistency with the lesion areas.

Conclusions: The devised transformer-guided cross-modality adaptive feature fusion module integrates the strengths of PET and CT, effectively enhancing the segmentation performance of esophageal GTV. The proposed TransAttPSNN has further advanced the research of esophageal GTV segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108216DOI Listing

Publication Analysis

Top Keywords

transformer-guided cross-modality
16
cross-modality adaptive
16
adaptive feature
16
feature fusion
16
esophageal gtv
12
esophageal gross
8
gross tumor
8
tumor volume
8
gtv segmentation
8
segmentation performance
8

Similar Publications