Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-wall carbon nanotubes (SWCNTs) have extraordinary electronic and optical properties that depend strongly on their exact chiral structure and their interaction with their inner and outer environment. The fluorescence (PL) of semiconducting SWCNTs, for instance, will shift depending on the molecules with which the SWCNT's hollow core is filled. These interaction-induced shifts are challenging to resolve on the ensemble level in samples containing a mixture of different filling contents due to the relatively large inhomogeneous line width of the ensemble SWCNT PL compared to the size of these shifts. To circumvent this inhomogeneous broadening, single-tube spectroscopy and hyperspectral imaging are often applied, which until now required time-consuming statistical studies. Here, we present hyperspectral PL microscopy combined with automated SWCNT segmenting based on either principal component analysis or a convolutional neural network, capable of both spatially and spectrally resolving the PL along the length of many individual SWCNTs at the same time and automatically fitting peak positions and line widths of individual SWCNTs. The methodology is demonstrated by accurately determining the emission shifts and line widths of thousands of left- and right-handed empty and water-filled SWCNTs coated with a chiral surfactant, resulting in four statistical distributions which cannot be resolved in ensemble spectroscopy of unsorted samples. The results demonstrate a robust method to quickly probe ensemble properties with single-enantiomer spectral resolution. Moreover, it promises to be an absolute quantitative method to characterize the relative abundances of SWCNTs with different handedness or filling content in macroscopic samples, simply by counting individual species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155256PMC
http://dx.doi.org/10.1021/acsnano.4c02226DOI Listing

Publication Analysis

Top Keywords

empty water-filled
8
single-wall carbon
8
individual swcnts
8
swcnts
6
hyperspectral detection
4
detection fluorescence
4
fluorescence shift
4
shift chirality-sorted
4
chirality-sorted empty
4
water-filled single-wall
4

Similar Publications

We present pre-polarization surface nuclear magnetic resonance (PP-SNMR) measurements performed with a Superconducting QUantum Interference Device (SQUID) magnetometer on water-filled pallet boxes. The SQUID directly detects the three components of the magnetic field (B-field) NMR response, while conventional SNMR experiments would detect its time derivative and most of the time only a single component. Each of the three vector components of the magnetic field NMR response consists of a component oscillating at Larmor frequency and of a non-oscillating component.

View Article and Find Full Text PDF

Objectives: To determine whether air-filled systems (AFS) provide comparable urodynamic investigation (UDI) trace quality to water-filled systems (WFS), the recommended standard by the International Continence Society.

Patients And Methods: A total of 490 patients undergoing UDI from April 2021 to January 2022 were included in this non-inferiority randomised controlled trial. Eligible patients were female and male adults with neurogenic lower urinary tract dysfunction (NLUTD).

View Article and Find Full Text PDF

Pioneering high barrier packaging for pressure assisted thermal sterilization of low-acid food products.

Food Res Int

November 2024

Department of Biological Systems Engineering, Washington State University, P.O. Box-646120, WA 99164-6120, USA. Electronic address:

Pressure-assisted thermal sterilization (PATS) utilizes flexible packaging with low oxygen and water vapor transmission rates (OTRs, WVTRs). In this study, pouches made from metal oxide (MO)-coated (A-D) and ethylene vinyl alcohol (EVOH)-containing (E, F) multilayer films were filled with water and mashed potatoes (MP), preheated at 98 ± 0.5 °C for 10 min, and processed using a pilot-scale high-pressure processing machine (HPP) at 600 ± 5 MPa for 300 s.

View Article and Find Full Text PDF
Article Synopsis
  • Single-wall carbon nanotubes (SWCNTs) display unique electronic and optical properties influenced by their chiral structure and interaction with substances inside and outside their hollow core.
  • Interaction-induced shifts in fluorescence are difficult to detect in mixed samples due to broad inhomogeneous line widths of the PL in ensemble measurements.
  • This study introduces a new method combining hyperspectral PL microscopy with automated segmentation techniques, enabling precise spatial and spectral resolution of individual SWCNTs, thus allowing for the accurate identification of emission shifts and the quantification of different types of SWCNTs in larger samples.
View Article and Find Full Text PDF

Background: Presently used Colles' fracture treatments have similar outcomes with significant complications. Previous studies of a dynamic functional fracture brace, achieving similar or better results had no significant complications. A novel brace design is described to achieve optimal patient outcomes.

View Article and Find Full Text PDF