98%
921
2 minutes
20
Measles is a highly infectious, vaccine-preventable disease that can cause severe illness, hospitalization, and death. A measles outbreak associated with a migrant shelter in Chicago occurred during February-April 2024, in which a total of 57 confirmed cases were identified, including 52 among shelter residents, three among staff members, and two among community members with a known link to the shelter. CDC simulated a measles outbreak among shelter residents using a dynamic disease model, updated in real time as additional cases were identified, to produce outbreak forecasts and assess the impact of public health interventions. As of April 8, the model forecasted a median final outbreak size of 58 cases (IQR = 56-60 cases); model fit and prediction range improved as more case data became available. Counterfactual analysis of different intervention scenarios demonstrated the importance of early deployment of public health interventions in Chicago, with a 69% chance of an outbreak of 100 or more cases had there been no mass vaccination or active case-finding compared with only a 1% chance when those interventions were deployed. This analysis highlights the value of using real-time, dynamic models to aid public health response, set expectations about outbreak size and duration, and quantify the impact of interventions. The model shows that prompt mass vaccination and active case-finding likely substantially reduced the chance of a large (100 or more cases) outbreak in Chicago.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115428 | PMC |
http://dx.doi.org/10.15585/mmwr.mm7319a2 | DOI Listing |
J Med Microbiol
September 2025
Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.
For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
School of Nursing, University of Minho, Braga, Portugal.
Background: The spread of misinformation on social media poses significant risks to public health and individual decision-making. Despite growing recognition of these threats, instruments that assess resilience to misinformation on social media, particularly among families who are central to making decisions on behalf of children, remain scarce.
Objective: This study aimed to develop and evaluate the psychometric properties of a novel instrument that measures resilience to misinformation in the context of social media among parents of school-age children.
World J Pediatr Congenit Heart Surg
September 2025
Postgraduate Program in Health Sciences, Medical School, Federal University of Amazonas (UFAM), Manaus, Amazonas, Brazil.
To analyze in-hospital mortality in children undergoing congenital heart interventions in the only public referral center in Amazonas, North Brazil, between 2014 and 2022. This retrospective cohort study included 1041 patients undergoing cardiac interventions for congenital heart disease, of whom 135 died during hospitalization. Records were reviewed to obtain demographic, clinical, and surgical data.
View Article and Find Full Text PDFJAMA Psychiatry
September 2025
Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, New York.
JAMA Dermatol
September 2025
Department of Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
Importance: Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased.
Objectives: To develop an improved melanoma risk prediction tool for invasive melanoma.