98%
921
2 minutes
20
Background & Aims: Hepatocellular carcinoma (HCC) is a heterogeneous cancer with varying levels of liver tumor initiating or cancer stem cells in the tumors. We aimed to investigate the expression of different liver cancer stem cell (LCSC) markers in human HCCs and identify their regulatory mechanisms in stemness-related cells.
Methods: We used an unbiased, single-marker sorting approach by flow cytometry, fluorescence-activated cell sorting, and transcriptomic analyses on HCC patients' resected specimens. Knockdown approach was used, and relevant functional assays were conducted on the identified targets of interest.
Results: Flow cytometry on a total of 60 HCC resected specimens showed significant heterogeneity in the expression of LCSC markers, with CD24, CD13, and EpCAM mainly contributing to this heterogeneity. Concomitant expression of CD24, CD13, and EpCAM was detected in 32 HCC samples, and this was associated with advanced tumor stages. Transcriptomic sequencing on the HCC cells sorted for these individual markers identified epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8L3) as a common gene associated with the 3 markers and was functionally validated in HCC cells. Knocking down EPS8L3 suppressed the expression of all 3 markers. To search for the upstream regulation of EPS8L3, we found SP1 bound to EPS8L3 promoter to drive EPS8L3 expression. Furthermore, using Akt inhibitor MK2206, we showed that Akt signaling-driven SP1 drove the expression of the 3 LCSC markers.
Conclusions: Our findings suggest that Akt signaling-driven SP1 promotes EPS8L3 expression, which is critical in maintaining the downstream expression of CD24, CD13, and EpCAM. The findings provide insight into potential LCSC-targeting therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238133 | PMC |
http://dx.doi.org/10.1016/j.jcmgh.2024.05.006 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, PR China. Electronic address
While vault RNA1-1 (vtRNA1-1) has been implicated in tumor biology, its specific role in cancer stemness and regorafenib resistance remains unexplored. In this study, we identify vtRNA1-1 as a critical regulator of cancer stemness and chemoresistance in Hepatocellular carcinoma (HCC). vtRNA1-1 enhances stemness properties by modulating the nuclear accumulation of Nanog, a core transcription factor.
View Article and Find Full Text PDFPathol Res Pract
September 2025
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China. Electronic address:
Objective: To investigate the mechanism by which C5ORF13 promotes epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) through interaction with eukaryotic translation initiation factor 6 (eIF6) and its clinical significance, and to identify the potential use of valproic acid (VPA) as an eIF6 inhibitor in HCC.
Methods: The expression of C5ORF13 in HCC and its prognostic impact were analyzed using GEPIA, UALCAN, and The HUMAN PROTEIN ATLAS databases. Lentiviral transfection technology was used to knock down or overexpress C5ORF13 and eIF6.
Ann Surg Oncol
September 2025
Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Hepatocellular carcinoma (HCC) frequently invades the portal vein, leading to early recurrence and a poor prognosis. However, the mechanisms underlying this invasion remain unclear. In this study, we aimed to detect portal vein circulating tumor cells (CTCs) using a Glypican-3-positive detection method and evaluate their prognostic significance.
View Article and Find Full Text PDFJ Proteome Res
September 2025
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
Hepatocellular carcinoma (HCC) constitutes approximately 90% of liver cancers, yet its early detection remains challenging due to the low sensitivity of current diagnostic methods and the difficulty in identifying minimal cancer cells within the body. This study employed a patient-derived xenograft (PDX) mouse model to screen for biomarkers, leveraging its advantage of low background interference compared to human serum exosome studies. Using a novel microextraction technique, exosomes were isolated from just one microliter of serum from HCC PDX mice, followed by proteomic profiling.
View Article and Find Full Text PDFBioimpacts
August 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Hepatocellular carcinoma (HCC) remains a major cause of cancer mortality, and effective therapeutic options are limited. MicroRNA‑372‑3p (miR‑372‑3p) has been implicated in HCC, yet its exact role is unclear.
Methods: We established miR‑372‑3p‑overexpressing HCC cell lines (HepG2, SNU‑449, JHH‑4) via lentiviral transduction.