AngioMT: A MATLAB based 2D image-to-physics tool to predict oxygen transport in vascularized microphysiological systems.

PLoS One

Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microphysiological models (MPS) are increasingly getting recognized as in vitro preclinical systems of pathophysiology and drug discovery. However, there is also a growing need to adapt and advance MPS to include the physiological contributions of the capillary vascular dynamics, because they undergo angiogenesis or vasculogenesis to deliver soluble oxygen and nutrients to its organs. Currently, the process of formation of microvessels in MPS is measured arbitrarily, and vascularized MPS do not include oxygen measurements in their analysis. Sensing and measuring tissue oxygen delivery is extremely difficult because it requires access to opaque and deep tissue, and/or requires extensive integration of biosensors that makes such systems impractical to use in the real world. Here, a finite element method-based oxygen transport program, called AngioMT, is built in MATLAB. AngioMT processes the routinely acquired 2D confocal images of microvascular networks in vitro and solves physical equations of diffusion-reaction dominated oxygen transport phenomena. This user-friendly image-to-physics transition in AngioMT is an enabling tool of MPS analysis because unlike the averaged morphological measures of vessels, it provides information of the spatial transport of oxygen both within the microvessels and the surrounding tissue regions. Further, it solves the more complex higher order reaction mechanisms which also improve the physiological relevance of this tool when compared directly against in vivo measurements. Finally, the program is applied in a multicellular vascularized MPS by including the ability to define additional organ/tissue subtypes in complex co-cultured systems. Therefore, AngioMT serves as an analytical tool to enhance the predictive power and performance of MPS that incorporate microcirculation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095698PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299160PLOS

Publication Analysis

Top Keywords

oxygen transport
12
mps include
8
vascularized mps
8
oxygen
7
mps
7
angiomt
5
angiomt matlab
4
matlab based
4
based image-to-physics
4
tool
4

Similar Publications

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Long-distance aeromedical transport of critically ill patients is an increasingly important component of modern intensive care. However, the combination of veno-arterial extracorporeal membrane oxygenation (VA ECMO) and renal replacement therapy (RRT) during an intercontinental flight had never been previously documented. This case report describes the first known case of a 27 year old patient with fulminant viral myocarditis and multi-organ failure who was successfully repatriated from Bangkok (Thailand) to Paris (France) while receiving both VA ECMO and 6 hours of in-flight sustained low-efficiency dialysis (SLED).

View Article and Find Full Text PDF

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

Ionic conductivity mechanisms in PEO-NaPF electrolytes.

Nanoscale

September 2025

Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.

Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.

View Article and Find Full Text PDF

Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.

View Article and Find Full Text PDF