A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Designing a Bayesian adaptive clinical trial to evaluate novel mechanical ventilation strategies in acute respiratory failure using integrated nested Laplace approximations. | LitMetric

Designing a Bayesian adaptive clinical trial to evaluate novel mechanical ventilation strategies in acute respiratory failure using integrated nested Laplace approximations.

Contemp Clin Trials

Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Department of Statistical Science, University College Londo

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Adaptive trials usually require simulations to determine values for design parameters, demonstrate error rates, and establish the sample size. We designed a Bayesian adaptive trial comparing ventilation strategies for patients with acute hypoxemic respiratory failure using simulations. The complexity of the analysis would usually require computationally expensive Markov Chain Monte Carlo methods but this barrier to simulation was overcome using the Integrated Nested Laplace Approximations (INLA) algorithm to provide fast, approximate Bayesian inference.

Methods: We simulated two-arm Bayesian adaptive trials with equal randomization that stratified participants into two disease severity states. The analysis used a proportional odds model, fit using INLA. Trials were stopped based on pre-specified posterior probability thresholds for superiority or futility, separately for each state. We calculated the type I error and power across 64 scenarios that varied the probability thresholds and the initial minimum sample size before commencing adaptive analyses. Two designs that maintained a type I error below 5%, a power above 80%, and a feasible mean sample size were evaluated further to determine the optimal design.

Results: Power generally increased as the initial sample size and the futility threshold increased. The chosen design had an initial recruitment of 500 and a superiority threshold of 0.9925, and futility threshold of 0.95. It maintained high power and was likely to reach a conclusion before exceeding a feasible sample size.

Conclusions: We designed a Bayesian adaptive trial to evaluate novel strategies for ventilation using the INLA algorithm to efficiently evaluate a wide range of designs through simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cct.2024.107560DOI Listing

Publication Analysis

Top Keywords

bayesian adaptive
16
sample size
16
trial evaluate
8
evaluate novel
8
ventilation strategies
8
respiratory failure
8
integrated nested
8
nested laplace
8
laplace approximations
8
adaptive trials
8

Similar Publications