A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

(SbLi)TiO-Doping Effect and Sintering Condition Tailoring in BaTiO-Based Ceramics. | LitMetric

(SbLi)TiO-Doping Effect and Sintering Condition Tailoring in BaTiO-Based Ceramics.

Materials (Basel)

School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, National Experimental Demonstration Center for Materials Science and Engine

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(1-x)(BaSrBi)(TiZr)O-x(SbLi)TiO (abbreviated as BSBiTZ-xSLT, x = 0.025, 0.05, 0.075, 0.1) ceramics were prepared via a conventional solid-state sintering method under different sintering temperatures. All BSBiTZ-xSLT ceramics have predominantly perovskite phase structures with the coexistence of tetragonal, rhombohedral and orthogonal phases, and present mainly spherical-like shaped grains relating to a liquid-phase sintering mechanism due to adding SLT and BiO. By adjusting the sintering temperature, all compositions obtain the highest relative density and present densified micro-morphology, and doping SLT tends to promote the growth of grain size and the grain size distribution becomes nonuniform gradually. Due to the addition of heterovalent ions and SLT, typical relaxor ferroelectric characteristic is realized, dielectric performance stability is broadened to ~120 °C with variation less than 10%, and very long and slim hysteresis loops are obtained, which is especially beneficial for energy storage application. All samples show extremely fast discharge performance where the discharge time t (time for 90% discharge energy density) is less than 160 ns and the largest discharge current occurs at around 30 ns. The 1155 °C sintered BSBiTZ-0.025SLT ceramics exhibit rather large energy storage density, very high energy storage efficiency and excellent pulse charge-discharge performance, providing the possibility to develop novel BT-based dielectric ceramics for pulse energy storage applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084442PMC
http://dx.doi.org/10.3390/ma17092085DOI Listing

Publication Analysis

Top Keywords

energy storage
16
grain size
8
ceramics
5
energy
5
sblitio-doping sintering
4
sintering condition
4
condition tailoring
4
tailoring batio-based
4
batio-based ceramics
4
ceramics 1-xbasrbitizro-xsblitio
4

Similar Publications