Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study explores the prediction of concrete compressive strength using machine learning models, aiming to overcome the time-consuming and complex nature of conventional methods. Four models-an artificial neural network (ANN), a multiple linear regression, a support vector machine, and a regression tree-are employed and compared for performance, using evaluation metrics such as mean absolute deviation, root mean square error, coefficient of correlation, and mean absolute percentage error. After preprocessing 1030 samples, the dataset is split into two subsets: 70% for training and 30% for testing. The ANN model, further divided into training, validation (15%), and testing (15%), outperforms others in accuracy and efficiency. This outcome streamlines compressive strength determination in the construction industry, saving time and simplifying the process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084521 | PMC |
http://dx.doi.org/10.3390/ma17092075 | DOI Listing |