A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Performance Comparison of Machine Learning Models for Concrete Compressive Strength Prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study explores the prediction of concrete compressive strength using machine learning models, aiming to overcome the time-consuming and complex nature of conventional methods. Four models-an artificial neural network (ANN), a multiple linear regression, a support vector machine, and a regression tree-are employed and compared for performance, using evaluation metrics such as mean absolute deviation, root mean square error, coefficient of correlation, and mean absolute percentage error. After preprocessing 1030 samples, the dataset is split into two subsets: 70% for training and 30% for testing. The ANN model, further divided into training, validation (15%), and testing (15%), outperforms others in accuracy and efficiency. This outcome streamlines compressive strength determination in the construction industry, saving time and simplifying the process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084521PMC
http://dx.doi.org/10.3390/ma17092075DOI Listing

Publication Analysis

Top Keywords

compressive strength
12
machine learning
8
learning models
8
concrete compressive
8
performance comparison
4
comparison machine
4
models concrete
4
strength prediction
4
prediction study
4
study explores
4

Similar Publications