Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spatial distribution of cell surface proteins governs vital processes of the immune system such as intercellular communication and mobility. However, fluorescence microscopy has limited scalability in the multiplexing and throughput needed to drive spatial proteomics discoveries at subcellular level. We present Molecular Pixelation (MPX), an optics-free, DNA sequence-based method for spatial proteomics of single cells using antibody-oligonucleotide conjugates (AOCs) and DNA-based, nanometer-sized molecular pixels. The relative locations of AOCs are inferred by sequentially associating them into local neighborhoods using the sequence-unique DNA pixels, forming >1,000 spatially connected zones per cell in 3D. For each single cell, DNA-sequencing reads are computationally arranged into spatial proteomics networks for 76 proteins. By studying immune cell dynamics using spatial statistics on graph representations of the data, we identify known and new patterns of spatial organization of proteins on chemokine-stimulated T cells, highlighting the potential of MPX in defining cell states by the spatial arrangement of proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166577PMC
http://dx.doi.org/10.1038/s41592-024-02268-9DOI Listing

Publication Analysis

Top Keywords

spatial proteomics
16
molecular pixelation
8
spatial
8
proteomics single
8
single cells
8
cell
5
pixelation spatial
4
proteomics
4
cells sequencing
4
sequencing spatial
4

Similar Publications

Flexible and robust cell-type annotation for highly multiplexed tissue images.

Cell Syst

September 2025

Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention.

View Article and Find Full Text PDF

The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.

View Article and Find Full Text PDF

There is limited understanding of the impact of anti-IL5 treatment on nasal polyp tissue biology in chronic rhinosinusitis with nasal polyps (CRSwNP). This study examined nasal polyp tissue cellular proteome and transcriptome responses to anti-IL5 treatment in CRSwNP utilising spatial profiling. GeoMx™ Digital Spatial Profiling (DSP) of 80 proteins and 1,833 mRNA targets in the polyp stroma and the whole transcriptome (18,815 mRNA targets) in polyp epithelia was undertaken on sinonasal biopsies collected from 20 individuals with eosinophilic CRSwNP before and after 16 and 24 weeks of mepolizumab treatment.

View Article and Find Full Text PDF

Motivation: Advances in high-throughput technologies have shifted the focus from bulk to single cell or spatial transcriptomic and proteomic analysis of tissues and cell cultures. The resulting increase in gene and/or protein lists leads to the subsequent growth of up- and downregulated pathways lists. This trend creates the need for pathway-network based integration strategies that allow quick exploration of shared and distinct mechanisms across datasets.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a multifactorial, mechano-inflammatory joint disorder characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling. Despite its high prevalence and significant impact on quality of life, no disease-modifying treatments have been approved. In many other disease areas, advanced omics technologies are impacting the development of advanced therapies.

View Article and Find Full Text PDF