Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Quantitative bias analysis (QBA) permits assessment of the expected impact of various imperfections of the available data on the results and conclusions of a particular real-world study. This article extends QBA methodology to multivariable time-to-event analyses with right-censored endpoints, possibly including time-varying exposures or covariates. The proposed approach employs data-driven simulations, which preserve important features of the data at hand while offering flexibility in controlling the parameters and assumptions that may affect the results. First, the steps required to perform data-driven simulations are described, and then two examples of real-world time-to-event analyses illustrate their implementation and the insights they may offer. The first example focuses on the omission of an important time-invariant predictor of the outcome in a prognostic study of cancer mortality, and permits separating the expected impact of confounding bias from noncollapsibility. The second example assesses how imprecise timing of an interval-censored event-ascertained only at sparse times of clinic visits-affects its estimated association with a time-varying drug exposure. The simulation results also provide a basis for comparing the performance of two alternative strategies for imputing the unknown event times in this setting. The R scripts that permit the reproduction of our examples are provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617302 | PMC |
http://dx.doi.org/10.1093/aje/kwae058 | DOI Listing |