Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Disease or injury may cause a change in the biomechanical properties of the lungs, which can alter lung function. Image registration can be used to measure lung ventilation and quantify volume change, which can be a useful diagnostic aid. However, lung registration is a challenging problem because of the variation in deformation along the lungs, sliding motion of the lungs along the ribs, and change in density.
Purpose: Landmark correspondences have been used to make deformable image registration robust to large displacements.
Methods: To tackle the challenging task of intra-patient lung computed tomography (CT) registration, we extend the landmark correspondence prediction model deep convolutional neural network-Match by introducing a soft mask loss term to encourage landmark correspondences in specific regions and avoid the use of a mask during inference. To produce realistic deformations to train the landmark correspondence model, we use data-driven synthetic transformations. We study the influence of these learned landmark correspondences on lung CT registration by integrating them into intensity-based registration as a distance-based penalty.
Results: Our results on the public thoracic CT dataset COPDgene show that using learned landmark correspondences as a soft constraint can reduce median registration error from approximately 5.46 to 4.08 mm compared to standard intensity-based registration, in the absence of lung masks.
Conclusions: We show that using landmark correspondences results in minor improvements in local alignment, while significantly improving global alignment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.17120 | DOI Listing |