Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: occurs extensively in the soil environment. It produces a range of antimicrobial compounds that play an important role in the field of biological control. However, during the actual application process it is often affected by factors such as the medium formulation and fermentation conditions, and therefore biocontrol measures often do not achieve their expected outcomes.
Methods: In this study, the BHZ-29 strain was used as the research object. The carbon and nitrogen sources, and inorganic salts that affect the number of viable bacteria and antibacterial potency of BHZ-29, were screened by a single factor test. A Plackett-Burman design experiment was conducted to determine the significant factors affecting the number of viable bacteria and antibacterial potency, and a Box-Behnken design experiment was used to obtain the optimal growth of BHZ-29. The medium formula that produced the highest number of viable bacteria and most antibacterial substances was determined. The initial pH, temperature, amount of inoculant, liquid volume, shaking speed, and culture time were determined by a single factor test. The factors that had a significant influence on the number of viable bacteria of BHZ-29 were selected by an orthogonal test. A Box-Behnken design experiment was conducted to obtain the optimal fermentation conditions, and highest number of viable bacteria and antibacterial titer.
Results: Molasses, peptone, and magnesium sulfate had significant effects on the viable count and antibacterial titer of BHZ-29. The viable count of BHZ-29 increased from 7.83 × 10 to 2.17 × 10 CFU/mL, and the antibacterial titer increased from 111.67 to 153.13 mm/mL when the optimal media were used. The optimal fermentation conditions for BHZ-29 were as follows: temperature 25.57°C, pH 7.23, culture time 95.90 h, rotation speed 160 rpm, amount of inoculant 2%, and liquid volume 100 ml. After the optimization of fermentation conditions, the number of viable bacteria increased to 3.39 × 10 CFU/mL, and the bacteriostatic titer increased to 158.85 mm/ml.The plant height and leaf number of cotton plants treated with BHZ-29 fermentation broth were higher than those of cotton inoculated with . The number of bacteria was 1.15 × 10 CFU/g, and the number of fungi was 1.60 × 10 spores/g. The disease index of the cotton seedlings treated with the optimized fermentation broth was 2.2, and a control effect of 93.8% was achieved. BHZ-29 could reduce the disease index of cotton wilt and had a controlling effect on the disease. The best effect was achieved in the treatment group with an inoculation concentration of 2 × 10 CFU/ml, the disease index was 14.50, and a control effect of 84.18% was achieved.
Discussion: The fermentation process parameters of the number of viable bacteria and antibacterial titer by strain BHZ-29 were optimized to lay a foundation for the practical production and application of strain BHZ-29 in agriculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071168 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1355369 | DOI Listing |