Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Head and neck squamous cell carcinoma (HNSCC) has a high mortality rate. In this study, we developed a Stokes-vector-derived polarized hyperspectral imaging (PHSI) system for H&E-stained pathological slides with HNSCC and built a dataset to develop a deep learning classification method based on convolutional neural networks (CNN). We use our polarized hyperspectral microscope to collect the four Stokes parameter hypercubes (S0, S1, S2, and S3) from 56 patients and synthesize pseudo-RGB images using a transformation function that approximates the human eye's spectral response to visual stimuli. Each image is divided into patches. Data augmentation is applied using rotations and flipping. We create a four-branch model architecture where each branch is trained on one Stokes parameter individually, then we freeze the branches and fine-tune the top layers of our model to generate final predictions. Our results show high accuracy, sensitivity, and specificity, indicating that our model performed well on our dataset. Future works can improve upon these results by training on more varied data, classifying tumors based on their grade, and introducing more recent architectural techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073817 | PMC |
http://dx.doi.org/10.1117/12.3007869 | DOI Listing |