Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Passive acoustic monitoring (PAM) is a powerful tool for studying ecosystems. However, its effective application in tropical environments, particularly for insects, poses distinct challenges. Neotropical katydids produce complex species-specific calls, spanning mere milliseconds to seconds and spread across broad audible and ultrasonic frequencies. However, subtle differences in inter-pulse intervals or central frequencies are often the only discriminatory traits. These extremities, coupled with low source levels and susceptibility to masking by ambient noise, challenge species identification in PAM recordings. This study aimed to develop a deep learning-based solution to automate the recognition of 31 katydid species of interest in a biodiverse Panamanian forest with over 80 katydid species. Besides the innate challenges, our efforts were also encumbered by a limited and imbalanced initial training dataset comprising domain-mismatched recordings. To overcome these, we applied rigorous data engineering, improving input variance through controlled playback re-recordings and by employing physics-based data augmentation techniques, and tuning signal-processing, model and training parameters to produce a custom well-fit solution. Methods developed here are incorporated into Koogu, an open-source Python-based toolbox for developing deep learning-based bioacoustic analysis solutions. The parametric implementations offer a valuable resource, enhancing the capabilities of PAM for studying insects in tropical ecosystems. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070257 | PMC |
http://dx.doi.org/10.1098/rstb.2023.0444 | DOI Listing |