A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A novel multidisciplinary machine learning approach based on clinical, imaging, colonoscopy, and pathology features for distinguishing intestinal tuberculosis from Crohn's disease. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Differentiating intestinal tuberculosis (ITB) from Crohn's disease (CD) remains a diagnostic dilemma. Misdiagnosis carries potential grave implications. We aim to establish a multidisciplinary-based model using machine learning approach for distinguishing ITB from CD.

Methods: Eighty-two patients including 25 patients with ITB and 57 patients with CD were retrospectively recruited (54 in training cohort and 28 in testing cohort). The region of interest (ROI) for the lesion was delineated on magnetic resonance enterography (MRE) and colonoscopy images. Radiomic features were extracted by least absolute shrinkage and selection operator regression. Pathological feature was extracted automatically by deep-learning method. Clinical features were filtered by logistic regression analysis. Diagnostic performance was evaluated by receiver operating characteristic (ROC) curve and decision curve analysis (DCA). Delong's test was applied to compare the efficiency between the multidisciplinary-based model and the other four single-disciplinary-based models.

Results: The radiomics model based on MRE features yielded an AUC of 0.87 (95% confidence interval [CI] 0.68-0.96) on the test data set, which was similar to the clinical model (AUC, 0.90 [95% CI 0.71-0.98]) and higher than the colonoscopy radiomics model (AUC, 0.68 [95% CI 0.48-0.84]) and pathology deep-learning model (AUC, 0.70 [95% CI 0.49-0.85]). Multidisciplinary model, integrating 3 clinical, 21 MRE radiomic, 5 colonoscopy radiomic, and 4 pathology deep-learning features, could significantly improve the diagnostic performance (AUC of 0.94, 95% CI 0.78-1.00) on the bases of single-disciplinary-based models. DCA confirmed the clinical utility.

Conclusions: Multidisciplinary-based model integrating clinical, MRE, colonoscopy, and pathology features was useful in distinguishing ITB from CD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-024-04307-7DOI Listing

Publication Analysis

Top Keywords

multidisciplinary-based model
12
model auc
12
machine learning
8
learning approach
8
colonoscopy pathology
8
pathology features
8
features distinguishing
8
intestinal tuberculosis
8
crohn's disease
8
model
8

Similar Publications