98%
921
2 minutes
20
The global need for energy is increasing at a high rate and is expected to double or increase by 50%, according to some studies, in 30 years. As a result, it is essential to look into alternative methods of producing power. Solar photovoltaic (PV) power plants utilize the sun's clean energy, but they're not always dependable since they depend on weather patterns and requires vast amount of land. Space-based solar power (SBSP) has emerged as the potential solution to this issue. SBSP can provide 24/7 baseload carbon-free electricity with power density over 10 times greater than terrestrial alternatives while requiring far less land. Solar power is collected and converted in space to be sent back to Earth via Microwave or laser wirelessly and used as electricity. However, harnessing its full potential necessitates tackling substantial technological obstacles in wireless power transmission across extensive distances in order to efficiently send power to receivers on the ground. When it comes to achieving a net-zero goal, the SBSP is becoming more viable option. This paper presents a review of wireless power transmission systems and an overview of SBSP as a comprehensive system. To introduce the state-of-the-art information, the properties of the system and modern SBSP models along with application and spillover effects with regard to different sectors was examined. The challenges and risks are discussed to address the key barriers for successful project implementation. The technological obstacles stem from the fact that although most of the technology is already available none are actually efficient enough for deployment so with, private enterprises entering space race and more efficient system, the cost of the entire system that prevented this notion from happening is also decreasing. With incremental advances in key areas and sustained investment, SBSP integrated with other renewable could contribute significantly to cross-sector decarbonization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064435 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e29996 | DOI Listing |
J Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFSmall
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.
In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.
Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.
View Article and Find Full Text PDFRSC Adv
September 2025
School of Engineering and Technology, National Textile University 37640 Faisalabad Pakistan
[This retracts the article DOI: 10.1039/D4RA01544D.].
View Article and Find Full Text PDF