Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The details of how soil microorganisms contribute to stable soil organic carbon pools are a pressing knowledge gap with direct implications for soil health and climate mitigation. It is now recognized that microbial necromass contributes substantially to the formation of stable soil carbon. However, the quantification of necromass in soils has largely been limited to model molecules such as aminosugar biomarkers. The abundance and chemical composition of other persistent microbial residues remain unresolved, particularly concerning how these pools may vary with microbial community structure, soil texture, and management practices. Here we use yearlong soil incubation experiments with an isotopic tracer to quantify the composition of persistent residues derived from microbial communities inhabiting sand or silt dominated soil with annual (corn) or perennial (switchgrass) monocultures. Persistent microbial residues were recovered in diverse soil biomolecular pools including metabolites, proteins, lipids, and mineral-associated organic matter (MAOM). The relative abundances of microbial contributions to necromass pools were consistent across cropping systems and soil textures. The greatest residue accumulation was not recovered in MAOM but in the light density fraction of soil debris that persisted after extraction by chemical fractionation using organic solvents. Necromass abundance was positively correlated with microbial biomass abundance and revealed a possible role of cell wall morphology in enhancing microbial carbon persistence; while gram-negative bacteria accounted for the greatest contribution to microbial-derived carbon by mass at one year, residues from gram-positive Actinobacteria and Firmicutes showed greater durability. Together these results offer a quantitative assessment of the relative importance of diverse molecular classes for generating durable soil carbon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172916 | DOI Listing |