Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surgical site complications (SSCs) are common, yet preventable hospital-acquired conditions. Single-use negative pressure wound therapy (sNPWT) has been shown to be effective in reducing rates of these complications. In the era of value-based care, strategic allocation of sNPWT is needed to optimize both clinical and financial outcomes. We conducted a retrospective analysis using data from the Premier Healthcare Database (2017-2021) for 10 representative open procedures in orthopedic, abdominal, cardiovascular, cesarean delivery, and breast surgery. After separating data into training and validation sets, various machine learning algorithms were used to develop pre-operative SSC risk prediction models. Model performance was assessed using standard metrics and predictors of SSCs were identified through feature importance evaluation. Highest-performing models were used to simulate the cost-effectiveness of sNPWT at both the patient and population level. The prediction models demonstrated good performance, with an average area under the curve of 76%. Prominent predictors across subspecialities included age, obesity, and the level of procedure urgency. Prediction models enabled a simulation analysis to assess the population-level cost-effectiveness of sNPWT, incorporating patient and surgery-specific factors, along with the established efficacy of sNPWT for each surgical procedure. The simulation models uncovered significant variability in sNPWT's cost-effectiveness across different procedural categories. This study demonstrates that machine learning models can effectively predict a patient's risk of SSC and guide strategic utilization of sNPWT. This data-driven approach allows for optimization of clinical and financial outcomes by strategically allocating sNPWT based on personalized risk assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1089/sur.2023.274DOI Listing

Publication Analysis

Top Keywords

prediction models
12
single-use negative
8
negative pressure
8
pressure wound
8
wound therapy
8
surgical site
8
site complications
8
clinical financial
8
financial outcomes
8
machine learning
8

Similar Publications

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

Background: Cardio-kidney-metabolic (CKM) disease represents a significant public health challenge. While proteomics-based risk scores (ProtRS) enhance cardiovascular risk prediction, their utility in improving risk prediction for a composite CKM outcome beyond traditional risk factors remains unknown.

Methods: We analyzed 23 815 UK Biobank participants without baseline CKM disease, defined by -Tenth Revision codes as cardiovascular disease (coronary artery disease, heart failure, stroke, peripheral arterial disease, atrial fibrillation/flutter), kidney disease (chronic kidney disease or end-stage renal disease), or metabolic disease (type 2 diabetes or obesity).

View Article and Find Full Text PDF

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

Background: At the 2020 UN General Assembly, China pledged to peak carbon emissions before 2030 and achieve carbon neutrality by 2060. However, the traditional social development model has led to increasing carbon emissions annually, highlighting the need to resolve the contradiction between development and carbon reduction. This study examines the relationship between carbon emissions, economy, population, and energy consumption in a specific region to support carbon peak and neutrality goals.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF