A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Data-driven shortened Insomnia Severity Index (ISI): a machine learning approach. | LitMetric

Data-driven shortened Insomnia Severity Index (ISI): a machine learning approach.

Sleep Breath

Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, 86 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The Insomnia Severity Index (ISI) is a widely used questionnaire with seven items for identifying the risk of insomnia disorder. Although the ISI is still short, more shortened versions are emerging for repeated monitoring in routine clinical settings. In this study, we aimed to develop a data-driven shortened version of the ISI that accurately predicts the severity level of insomnia disorder.

Methods: We collected a sample of 800 responses from the EMBRAIN survey system. Based on the responses, seven items were grouped based on the similarity of their response using exploratory factor analysis (EFA). The most representative item within each group was selected by using eXtreme Gradient Boosting (XGBoost).

Results: Based on the selected three key items, maintenance of sleep, interference with daily function, and concerns about sleep problems, we developed a data-driven shortened questionnaire of ISI, ISI-3 m (machine learning). ISI-3 m achieved the highest coefficient of determination ( ) for the ISI score prediction task and the accuracy of 0.965, precision of 0.841, and recall of 0.838 for the multiclass-classification task, outperforming four previous versions of the shortened ISI.

Conclusion: As ISI-3 m is a highly accurate shortened version of the ISI, it allows clinicians to efficiently screen for insomnia and observe variations in the condition throughout the treatment process. Furthermore, the framework based on the combination of EFA and XGBoost developed in this study can be utilized to develop data-driven shortened versions of the other questionnaires.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11325-024-03037-wDOI Listing

Publication Analysis

Top Keywords

data-driven shortened
16
insomnia severity
8
machine learning
8
shortened versions
8
develop data-driven
8
shortened version
8
version isi
8
isi
6
shortened
6
insomnia
5

Similar Publications