A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Applications of deep learning in trauma radiology: A narrative review. | LitMetric

Applications of deep learning in trauma radiology: A narrative review.

Biomed J

Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diagnostic imaging is essential in modern trauma care for initial evaluation and identifying injuries requiring intervention. Deep learning (DL) has become mainstream in medical image analysis and has shown promising efficacy for classification, segmentation, and lesion detection. This narrative review provides the fundamental concepts for developing DL algorithms in trauma imaging and presents an overview of current progress in each modality. DL has been applied to detect free fluid on Focused Assessment with Sonography for Trauma (FAST), traumatic findings on chest and pelvic X-rays, and computed tomography (CT) scans, identify intracranial hemorrhage on head CT, detect vertebral fractures, and identify injuries to organs like the spleen, liver, and lungs on abdominal and chest CT. Future directions involve expanding dataset size and diversity through federated learning, enhancing model explainability and transparency to build clinician trust, and integrating multimodal data to provide more meaningful insights into traumatic injuries. Though some commercial artificial intelligence products are Food and Drug Administration-approved for clinical use in the trauma field, adoption remains limited, highlighting the need for multi-disciplinary teams to engineer practical, real-world solutions. Overall, DL shows immense potential to improve the efficiency and accuracy of trauma imaging, but thoughtful development and validation are critical to ensure these technologies positively impact patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751421PMC
http://dx.doi.org/10.1016/j.bj.2024.100743DOI Listing

Publication Analysis

Top Keywords

deep learning
8
narrative review
8
trauma imaging
8
trauma
6
applications deep
4
learning trauma
4
trauma radiology
4
radiology narrative
4
review diagnostic
4
diagnostic imaging
4

Similar Publications