A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microstructure regulation and enhanced VOC removal performance of carbon aerogels by surface carbon nanotube grown. | LitMetric

Microstructure regulation and enhanced VOC removal performance of carbon aerogels by surface carbon nanotube grown.

Sci Total Environ

School of Energy and Power Engineering, Shandong University, Jinan 250061, China; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Jinan 250061, China.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon aerogels were newly employed in adsorption for volatile organic compounds (VOCs) as an emerging material. In contrast, the microstructure and high carbon consumption are the primary factors restricting their application scenarios. Carbon nanotubes, recognized for their controllable cylindrical hollow structure and hydrophobic walls, generally possess higher adsorption capacities than typical carbon adsorbents. In this study, carbon nanotubes were grown on the surface of carbon aerogels using the chemical vapor deposition method by controlling different deposition conditions. The results showed that the modified samples displayed the maximum adsorption capacity of 145.0 mg/g and 178.3 mg/g for toluene and 1,2- dichlorobenzene, respectively. After ten regeneration cycles, the performance decreased by 7.9 % and 5.6 %, respectively. Meanwhile, the carbon replenishment was about 0.2 g/g, which is an excellent complement for carbon consumption. Various characterization patterns showed that deposition temperature was reflected in its deposition rate, deposition times influenced the formation of multi-walled carbon nanotubes, and deposition concentration affected the length of carbon nanotubes. This study offers valuable insight into the growth patterns of carbon nanotubes and the microscale regulation of carbon material surfaces, and this method is expected to be an effective means of carbon replenishment, carbon addition to carbon-poor materials, and enhancement of VOCs removal performance, and the growth mechanisms investigated are instructive for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172803DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
20
carbon
16
carbon aerogels
12
removal performance
8
surface carbon
8
carbon consumption
8
carbon replenishment
8
deposition
6
nanotubes
5
microstructure regulation
4

Similar Publications