98%
921
2 minutes
20
The treatment of waterborne micropollutants, such as diclofenac, presents a significant challenge to wastewater treatment plants due to their incomplete removal by conventional methods. Ozonation is an effective technique for the degradation of micropollutants. However, incomplete oxidation can lead to the formation of ecotoxic by-products that require a subsequent post-treatment step. In this study, we analyze the susceptibility of micropollutant ozonation products to enzymatic digestion with laccase from Trametes versicolor to evaluate the potential of enzymatic treatment as a post-ozonation step. The omnipresent micropollutant diclofenac is used as an example, and the enzymatic degradation kinetics of all 14 detected ozonation products are analyzed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and tandem mass spectrometry (MS). The analysis shows that most of the ozonation products are responsive to chemo-enzymatic treatment but show considerable variation in enzymatic degradation kinetics and efficiencies. Mechanistic investigation of representative transformation products reveals that the hydroxylated aromatic nature of the ozonation products matches the substrate spectrum, facilitating their rapid recognition as substrates by laccase. However, after initiation by laccase, the subsequent chemical pathway of the enzymatically formed radicals determines the global degradability observed in the enzymatic process. Substrates capable of forming stable molecular oxidation products inhibit complete detoxification by oligomerization. This emphasizes that it is not the enzymatic uptake of the substrates but the channelling of the reaction of the substrate radicals towards the oligomerization of the substrate radicals that is the key step in the further development of an enzymatic treatment step for wastewater applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142112 | DOI Listing |
J Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDFEnviron Res
September 2025
Thrust of Sustainable Energy and Environment, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 510000, China. Electronic address:
China's aluminum-products industry, a large-scale consumer of industrial paints, is a potentially significant source of full-volatility organic compounds (F-VOCs). However, the emission characteristics of F-VOCs, including VOCs, intermediate-, semi-, and low-volatility organic compounds (I/S/LVOCs), and their role in ozone formation potentials (OFP), and secondary organic aerosol formation potentials (SOAP) remain unclear. In this study, we collected in-field samples from three industrial paints (solvent-based, water-based and powder paints) at spraying and drying processes, and treatment devices to analyze the emission characteristics of F-VOCs, OFP, SOAP.
View Article and Find Full Text PDFJ Occup Environ Hyg
September 2025
Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.
This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.
View Article and Find Full Text PDFBiosaf Health
August 2025
Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno 89557 Nevada, United States of America.
The role of personal protective equipment (PPE) in protecting against exposure to infectious agents and toxic chemicals is well-established. However, the global surge in PPE demand during the pandemic exposed challenges, including shortages and environmental impacts from disposable waste. Developing effective, scalable, and sustainable decontamination methods for the reuse of PPE is essential.
View Article and Find Full Text PDFEnviron Int
August 2025
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092, Zurich, Switzerland. Electronic address:
Synthetic antioxidants (SAOs) are widely used additives in industrial and consumer products, yet their human exposure and fate throughout wastewater treatment remain poorly understood. This study investigates the occurrence of SAOs and their human metabolites in wastewater influent as well as their abatement in three wastewater treatment plants (WWTPs) employing both conventional and advanced treatment technologies. In vitro human liver S9 assays were performed to generate a SAO metabolite MS2 library containing over 2500 potential metabolites, which was matched against wastewater influent data.
View Article and Find Full Text PDF