Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch. Although this interdependence is well-established, the precise mechanism of activation and the specific MutL-UvrD interactions that trigger helicase activity remain elusive. To address these questions, we employed site-specific crosslinking techniques using single-cysteine variants of MutL and UvrD followed by functional assays. Our investigation unveils that the C-terminal domain of MutL not only engages with UvrD but also acts as a self-sufficient activator of UvrD helicase activity on DNA substrates with 3'-single-stranded tails. Especially when MutL is covalently attached to the 2B or 1B domain the tail length can be reduced to a minimal substrate of 5 nucleotides without affecting unwinding efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2024.168589 | DOI Listing |