Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA, beyond its canonical B-form double helix, adopts various alternative conformations, among which the i-motif, emerging in cytosine-rich sequences under acidic conditions, holds significant biological implications in transcription modulation and telomere biology. Despite recognizing the crucial role of i-motifs, predictive software for i-motif forming sequences has been limited. Addressing this gap, we introduce 'iM-Seeker', an innovative computational platform designed for the prediction and evaluation of i-motifs. iM-Seeker exhibits the capability to identify potential i-motifs within DNA segments or entire genomes, calculating stability scores for each predicted i-motif based on parameters such as the cytosine tracts number, loop lengths, and sequence composition. Furthermore, the webserver leverages automated machine learning (AutoML) to effortlessly fine-tune the optimal i-motif scoring model, incorporating user-supplied experimental data and customised features. As an advanced, versatile approach, 'iM-Seeker' promises to advance genomic research, highlighting the potential of i-motifs in cell biology and therapeutic applications. The webserver is freely available at https://im-seeker.org.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223794PMC
http://dx.doi.org/10.1093/nar/gkae315DOI Listing

Publication Analysis

Top Keywords

automated machine
8
machine learning
8
potential i-motifs
8
i-motifs
5
im-seeker webserver
4
webserver dna
4
dna i-motifs
4
i-motifs prediction
4
prediction scoring
4
scoring automated
4

Similar Publications

Atomic resolution scanning probe microscopy, and in particular scanning tunnelling microscopy (STM) allows for high-spatial-resolution imaging and also spectroscopic analysis of small organic molecules. However, preparation and characterisation of the probe apex in situ by a human operator is one of the major barriers to high-throughput experimentation and to reproducibility between experiments. Characterisation of the probe apex is usually accomplished via assessment of the imaging quality on the target molecule and also the characteristics of the scanning tunnelling spectra (STS) on clean metal surfaces.

View Article and Find Full Text PDF

Adult congenital heart disease (ACHD) constitutes a heterogeneous and expanding patient cohort with distinctive diagnostic and management challenges. Conventional detection methods are ineffective at reflecting lesion heterogeneity and the variability in risk profiles. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL) models, has revolutionized the potential for improving diagnosis, risk stratification, and personalized care across the ACHD spectrum.

View Article and Find Full Text PDF

OpenML is an open-source platform that democratizes machine-learning evaluation by enabling anyone to share datasets in uniform standards, define precise machine-learning tasks, and automatically share detailed workflows and model evaluations. More than just a platform, OpenML fosters a collaborative ecosystem where scientists create new tools, launch initiatives, and establish standards to advance machine learning. Over the past decade, OpenML has inspired over 1,500 publications across diverse fields, from scientists releasing new datasets and benchmarking new models to educators teaching reproducible science.

View Article and Find Full Text PDF

ASReview LAB v.2: Open-source text screening with multiple agents and a crowd of experts.

Patterns (N Y)

July 2025

Department of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, the Netherlands.

ASReview LAB v.2 introduces an advancement in AI-assisted systematic reviewing by enabling collaborative screening with multiple experts ("a crowd of oracles") using a shared AI model. The platform supports multiple AI agents within the same project, allowing users to switch between fast general-purpose models and domain-specific, semantic, or multilingual transformer models.

View Article and Find Full Text PDF

The tree-based pipeline optimization tool (TPOT) is one of the earliest automated machine learning (ML) frameworks developed for optimizing ML pipelines, with an emphasis on addressing the complexities of biomedical research. TPOT uses genetic programming to explore a diverse space of pipeline structures and hyperparameter configurations in search of optimal pipelines. Here, we provide a comparative overview of the conceptual similarities and implementation differences between the previous and latest versions of TPOT, focusing on two key aspects: (1) the representation of ML pipelines and (2) the underlying algorithm driving pipeline optimization.

View Article and Find Full Text PDF