Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Enzymes are natural catalysts which are gaining momentum in chemical synthesis due to their exquisiteselectivity and their biodegradability. However, the cost-efficiency and the sustainability of the overall biocatalytic process must be enhanced to unlock completely the potential of enzymes for industrial applications. To reach this goal, enzyme immobilization and the integration into continuous flow reactors have been the cornerstone of our research. We showed key examples of the advantages of those tools for the biosynthesis of antivirals, anticancer drugs, and valuable fragrance molecules. By combining new strategies to immobilize biocatalysts, innovative bioengineering approaches, and process development, the performance of the reactions could be boosted up to 100-fold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2533/chimia.2024.222 | DOI Listing |