A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data. | LitMetric

Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.

Sensors (Basel)

Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activity recognition is one of the significant technologies accompanying the development of the Internet of Things (IoT). It can help in recording daily life activities or reporting emergencies, thus improving the user's quality of life and safety, and even easing the workload of caregivers. This study proposes a human activity recognition (HAR) system based on activity data obtained via the micro-Doppler effect, combining a two-stream one-dimensional convolutional neural network (1D-CNN) with a bidirectional gated recurrent unit (BiGRU). Initially, radar sensor data are used to generate information related to time and frequency responses using short-time Fourier transform (STFT). Subsequently, the magnitudes and phase values are calculated and fed into the 1D-CNN and Bi-GRU models to extract spatial and temporal features for subsequent model training and activity recognition. Additionally, we propose a simple cross-channel operation (CCO) to facilitate the exchange of magnitude and phase features between parallel convolutional layers. An open dataset collected through radar, named Rad-HAR, is employed for model training and performance evaluation. Experimental results demonstrate that the proposed 1D-CNN+CCO-BiGRU model demonstrated superior performance, achieving an impressive accuracy rate of 98.2%. This outperformance of existing systems with the radar sensor underscores the proposed model's potential applicability in real-world scenarios, marking a significant advancement in the field of HAR within the IoT framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053730PMC
http://dx.doi.org/10.3390/s24082530DOI Listing

Publication Analysis

Top Keywords

activity recognition
16
human activity
8
radar sensor
8
model training
8
recognition
4
recognition based
4
based deep
4
deep learning
4
learning micro-doppler
4
radar
4

Similar Publications