Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052428PMC
http://dx.doi.org/10.3390/medicina60040653DOI Listing

Publication Analysis

Top Keywords

radiation
14
ionizing radiation
12
health care
8
radiation energy
8
energy
6
cells
6
health effects
4
effects ionizing
4
radiation human
4
human body
4

Similar Publications

Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.

View Article and Find Full Text PDF

Reply to: Comments on the Study of Outcomes After Radiation for Oligoprogressive Disease Sites in Patients With -Mutant Lung Cancer.

JCO Precis Oncol

September 2025

Monica F. Chen, MD, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, Daniel Gomez, MD, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, and Helena A. Yu, MD, Division of Solid Tumor Oncology, Depart

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women and a leading cause of mortality in Europe. Early detection through screening reduces mortality, yet participation in mammography-based programs remains suboptimal due to discomfort, radiation exposure, and accessibility issues. Thermography, particularly when driven by artificial intelligence (AI), is being explored as a noninvasive, radiation-free alternative.

View Article and Find Full Text PDF