A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of a homoarginine biosynthetic gene from a microcystin biosynthetic pathway in Fischerella sp. PCC 9339. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microcystins (MCs) are a family of chemically diverse toxins produced by numerous distantly related cyanobacteria. They are potent inhibitors of eukaryotic protein phosphatases 1 and 2A and are responsible for the toxicosis and death of wild and domestic animals around the world. Microcystins are synthesized on large enzyme complexes comprised of peptide synthetases, polyketide synthases, and additional modifying enzymes. Bioinformatic analysis identified the presence of an additional uncharacterized enzyme in the microcystin (mcy) biosynthetic gene cluster in Fischerella sp. PCC 9339, which we named McyK, that lacked a clearly defined role in the biosynthesis of microcystin. Further bioinformatic analysis suggested that McyK belongs to the inosamine-phosphate amidinotransferase family and could be involved in synthesizing homo amino acids. Quadrupole time-of-flight tandem mass spectrometry (Q-TOFMS/MS) analysis confirmed that Fischerella sp. PCC 9339 produces MC-Leucine-Homoarginine(MC-LHar) and [Aspartic acid]MC-Leucine-Homoarginine ([Asp]MC-LHar) as the dominant chemical variants. We hypothesized that the McyK enzyme might be involved in the production of microcystin variants containing homoarginine (Har) in the strain. Heterologous expression of a codon-optimized mcyK gene in Escherichia coli confirmed that McyK is responsible for the synthesis of L-Har. These results confirm the production of MC-LHar, a novel microcystin chemical variant [Asp]MC-LHar, and a new microcystin biosynthetic enzyme involved in supply of the rare homo-amino acid Har to the microcystin biosynthetic pathway in Fischerella sp. PCC 9339. This study provides new insights into the logic underpinning the biosynthesis of microcystin chemical variants and broadens our knowledge of structural diversity of the microcystin family of toxins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2024.107733DOI Listing

Publication Analysis

Top Keywords

pcc 9339
16
microcystin biosynthetic
12
fischerella pcc
12
microcystin
9
biosynthetic gene
8
biosynthetic pathway
8
bioinformatic analysis
8
biosynthesis microcystin
8
chemical variants
8
enzyme involved
8

Similar Publications