Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2024.110277DOI Listing

Publication Analysis

Top Keywords

models
8
optimal outcomes
8
model development
8
joint physics
4
physics radiobiology
4
radiobiology dream
4
dream team
4
team vision
4
vision better
4
better response
4

Similar Publications

Surfactant-rich aqueous media are common in natural environments. The sea surface microlayer and sea spray droplets are good examples and are also frequently markedly enriched in organic pollutants. This study focuses on the degradation kinetics of organic pollutants initiated by the hydroxyl radical in such surfactant-rich environments.

View Article and Find Full Text PDF

Objective: To evaluate the clinical characteristics, social deprivation, insurance coverage, and medication use across regional subsets of patients with psoriatic arthritis (PsA) in the US.

Methods: A cross-sectional study of PsA patients in the Rheumatology Informatics System for Effectiveness (RISE) registry between January 2020 and March2023 was conducted. Distribution of high disease activity (HDA - RAPID3>12), high comorbidity (RxRisk ≥90 percentile), high Area Deprivation Index (ADI ≥80), insurance coverage, prednisone ≥10mg daily, and all DMARD therapies across geographic regions were evaluated.

View Article and Find Full Text PDF

Estimation of Brachial-Ankle Pulse Wave Velocity With Hierarchical Regression Model From Wrist Photoplethysmography and Electrocardiographic Signals: Method Design.

JMIR Biomed Eng

August 2025

Cardiovascular Center and Divisions of Cardiology and Hospital Medicine, Department of Internal Medicine, National Taiwan University Hospital, No.7, Chung Shan S Rd, Taipei, 100225, Taiwan, 886 2-2312-3456.

Background: Photoplethysmography (PPG) signals captured by wearable devices can provide vascular age information and support pervasive and long-term monitoring of personal health condition.

Objective: In this study, we aimed to estimate brachial-ankle pulse wave velocity (baPWV) from wrist PPG and electrocardiography (ECG) from smartwatch.

Methods: A total of 914 wrist PPG and ECG sequences and 278 baPWV measurements were collected via the smartwatch from 80 men and 82 women with average age of 63.

View Article and Find Full Text PDF