Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The lithium-ion transport mechanism in 0.7Li(CBH)-0.3Li(CBH) complex hydride solid electrolyte was studied over a wide time-scale (ns-ms) by choosing appropriate techniques for assessing ionic motion on the desired time-scale using nuclear magnetic resonance (NMR) relaxation, AC impedance, and pulsed field gradient-NMR (PFG-NMR) measurements. The Li NMR line width decreased with increasing temperature, and the spin-lattice relaxation time for the cation and anions showed a minimum near 303 K, indicating that the lithium ions and the anions were highly mobile. The activation energy estimated from the analysis of the NMR relaxation time matched well with the values estimated from the AC impedance and PFG-NMR. This confirms that the lithium-ion motion in 0.7Li(CBH)-0.3Li(CBH) is the same over a wide time-scale, suggesting steady Li-ion motion over a wide transport range. This understanding offers insights into strategies for designing complex hydride lithium superionic conductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c00754DOI Listing

Publication Analysis

Top Keywords

complex hydride
8
wide time-scale
8
nmr relaxation
8
relaxation time
8
understanding ion
4
ion dynamics
4
dynamics closoborate-type
4
closoborate-type lithium-ion
4
lithium-ion conductors
4
conductors time-scales
4

Similar Publications

We model Auger spectra using second-order Møller-Plesset perturbation (MP2) theory combined with complex-scaled basis functions. For this purpose, we decompose the complex MP2 energy of the core-hole state into contributions from specific decay channels and propose a corresponding equation-of-motion (EOM) method for computing the doubly ionized final states of Auger decay. These methods lead to significant savings in computational cost compared to our recently developed approaches based on coupled-cluster theory [F.

View Article and Find Full Text PDF

Nitrogenase accumulates reducing equivalents in hydrides and couples H elimination to the reductive binding of N at a di-iron edge of its FeMo cofactor (FeMoco). Here, we describe that oxidation of a pyrazolato-based dinickel(II) dihydride complex K[L(Ni-H)] (), either electrochemically or chemically using H or ferrocenium, triggers H elimination and binding of N in a constrained and extremely bent bridging mode in [LNi(μ-N)] (). Spectroscopic and computational evidence indicate that the electronic structure of is best described as Ni-(N)-Ni, with a rare 1e reduced and significantly activated N substrate ( = 1894 cm).

View Article and Find Full Text PDF

In this study, we report NNN pincer bis-imino pyridine-supported copper(II) catalysts for the sustainable, eco-friendly, and practical multi-component synthesis (MCS) of pyrazolines and pyrimidines driven by the acceptorless dehydrogenation of benzyl alcohols. Herein, we synthesize and characterize two well-defined phosphine-free NNN pincer-supported copper(II) complexes, C1 and C2, using IR, UV-vis, HRMS, and single-crystal XRD. Utilizing these complexes, we develop the first multi-component synthetic route for 1,3,5-trisubstituted pyrazolines (TriPyz) from the dehydrogenative coupling of renewable benzyl alcohols and aromatic ketones with phenyl hydrazine, generating ecologically benign HO and H as side products.

View Article and Find Full Text PDF

The reaction mechanism of the excited-state copper-catalyzed cascade synthesis of α,β-unsaturated-γ-lactams from aroyl chlorides, acrylamides, and -hexanol has been systematically investigated using density functional theory (DFT) calculations. The reaction consists of four elementary steps: initiation of aroyl radical formation from aroyl chlorides by the excited-state Cu-Complex; subsequent radical relay between the aroyl radical and acrylamides leading to C-C bond formation; coupling of the C-N bond through the activation of N-H bond/coordination site migration facilitated by a Cu-Complex resulting in the formation of a five-membered ring scaffold; and then the functionalization of the γ-C of lactam to introduce alkoxy or hydride groups is achieved through electrophilic substitution. The single-carbon atom insertion is realized by the radical relay and copper-catalyzed radical polar cross-coupling strategy.

View Article and Find Full Text PDF

The description of strongly correlated systems interacting with quantized cavity modes poses significant theoretical challenges due to the combinatorial scaling of the electronic and photonic degrees of freedom. Recent advances addressing this complexity include cavity quantum electrodynamics (QED) generalizations of complete active space configuration interaction and density matrix renormalization group methods. In this work, we introduce a QED extension of state-averaged complete active space self-consistent field theory, which incorporates cavity-induced correlations through a second-order orbital optimization framework with robust convergence properties.

View Article and Find Full Text PDF