98%
921
2 minutes
20
Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c02757 | DOI Listing |
New Phytol
September 2025
Department of Botany, Faculty of Science, Charles University, Benátská 2, 12800, Praha 2, Czech Republic.
Phytoplankton, as primary producers, play a key role in aquatic ecosystems. Their community turnover is shaped by morphological traits that enable adaptation to diverse abiotic and biotic factors. Yet, the temporal scale of these dynamics remains poorly understood due to limited high-frequency sampling studies.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
July 2025
Mianyang Key Laboratory of Development and Utilization of Chinese Medicine Resources, Sichuan College of Traditional Chinese Medicine Mianyang 621000, China.
To investigate the effects of phosphorus fertilizer on the morphological traits, active ingredients and rhizosphere soil microbial community of Polygala tenuifolia. The phosphorus fertilizer was calculated in terms of P_2O_5. Five treatments were set up: 0(CK), 17(P1), 34(P2), 51(P3), and 68(P4) kg per Mu(1 Mu≈667 m~2).
View Article and Find Full Text PDFNat Commun
September 2025
BioMap Research, Palo Alto, CA, USA.
Investigating cell morphology changes after perturbations using high-throughput image-based profiling is increasingly important for phenotypic drug discovery, including predicting mechanisms of action (MOA) and compound bioactivity. The vast space of chemical and genetic perturbations makes it impractical to explore all possibilities using conventional methods. Here we propose MorphDiff, a transcriptome-guided latent diffusion model that simulates high-fidelity cell morphological responses to perturbations.
View Article and Find Full Text PDFMol Phylogenet Evol
August 2025
Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA. Electronic address:
The delimitation of species boundaries has been a constant challenge to the fields of systematics, natural history, and conservation biology. Subtle and minor morphological differences in a widespread species complex make delimiting species boundaries particularly difficult. High throughput targeted sequencing of hundreds of loci has allowed researchers to obtain improved insights into evolutionary processes and resolved previously ambiguous phylogenetic relationships.
View Article and Find Full Text PDFData Brief
October 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466 Seeland, Germany.
This dataset was generated to characterize the physiological and morphological mechanisms underlying tolerance and resilience to combined drought and heat stress using a panel of 106 Mediterranean maize inbred lines. To achieve this, high-throughput non-invasive phenotyping combined with genome-wide association analysis was applied to accurately capture the dynamic responses of the maize lines to stress and to dissect the genetic basis of maize tolerance and resilience. Two experiments were conducted under control (25/20 °C, 70 % field capacity (FC)) and stress conditions (35/25 °C, 30 % FC).
View Article and Find Full Text PDF