Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c02757DOI Listing

Publication Analysis

Top Keywords

high-throughput morphological
4
morphological chirality
4
chirality quantification
4
quantification twisted
4
twisted wrinkled
4
wrinkled gold
4
gold nanorods
4
nanorods chirality
4
chirality gold
4
gold nanostructures
4

Similar Publications

Phytoplankton, as primary producers, play a key role in aquatic ecosystems. Their community turnover is shaped by morphological traits that enable adaptation to diverse abiotic and biotic factors. Yet, the temporal scale of these dynamics remains poorly understood due to limited high-frequency sampling studies.

View Article and Find Full Text PDF

To investigate the effects of phosphorus fertilizer on the morphological traits, active ingredients and rhizosphere soil microbial community of Polygala tenuifolia. The phosphorus fertilizer was calculated in terms of P_2O_5. Five treatments were set up: 0(CK), 17(P1), 34(P2), 51(P3), and 68(P4) kg per Mu(1 Mu≈667 m~2).

View Article and Find Full Text PDF

Investigating cell morphology changes after perturbations using high-throughput image-based profiling is increasingly important for phenotypic drug discovery, including predicting mechanisms of action (MOA) and compound bioactivity. The vast space of chemical and genetic perturbations makes it impractical to explore all possibilities using conventional methods. Here we propose MorphDiff, a transcriptome-guided latent diffusion model that simulates high-fidelity cell morphological responses to perturbations.

View Article and Find Full Text PDF

The delimitation of species boundaries has been a constant challenge to the fields of systematics, natural history, and conservation biology. Subtle and minor morphological differences in a widespread species complex make delimiting species boundaries particularly difficult. High throughput targeted sequencing of hundreds of loci has allowed researchers to obtain improved insights into evolutionary processes and resolved previously ambiguous phylogenetic relationships.

View Article and Find Full Text PDF

This dataset was generated to characterize the physiological and morphological mechanisms underlying tolerance and resilience to combined drought and heat stress using a panel of 106 Mediterranean maize inbred lines. To achieve this, high-throughput non-invasive phenotyping combined with genome-wide association analysis was applied to accurately capture the dynamic responses of the maize lines to stress and to dissect the genetic basis of maize tolerance and resilience. Two experiments were conducted under control (25/20 °C, 70 % field capacity (FC)) and stress conditions (35/25 °C, 30 % FC).

View Article and Find Full Text PDF